686
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Environmentally friendly protection of European beech against fire and fungal decay using a combination of thermal modification and mineralisation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 33-44 | Received 12 Apr 2023, Accepted 07 Jun 2023, Published online: 05 Jul 2023

References

  • Ali, S., Hussain, D. S. A. and Tohir, M. Z. M. (2019) Fire test and effects of fire retardant on the natural ability of timber: a review. Pertanika Journal of Science and Technology, 27(2), 867–895.
  • Ammann, S., Schlegel, S., Beyer, M., Aehlig, K., Lehmann, M., Jung, H. and Niemz, P. (2016) Quality assessment of glued ash wood for construction engineering. European Journal of Wood and Wood Products, 74(1), 67–74. doi:10.1007/s00107-015-0981-2
  • Arnold, M. (2010) Effect of moisture on the bending properties of thermally modified beech and spruce. Journal of Materials Science, 45, 669–680. doi:10.1007/s10853-009-3984-8
  • Awoyemi, L. and Jones, I. P. (2011) Anatomical explanations for the changes in properties of western red cedar (Thuja plicata) wood during heat treatment. Wood Science and Technology, 45, 261–267. doi:10.1007/s00226-010-0315-9
  • Badescu, L. A. M. (2013) Static bending strength and modulus of elasticity in static bending along the height of beech wood (Fagus sylvatica L.) obtained from forest thinning. Recent Advances in Engineering Mechanics, Structures and Urban Planning (Proceedings of the 6th International Conference on Engineering Mechanics, Structures, Engineering Geology (EMESEG ‘13) 20-22 February, Cambridge, UK). Published in Mathematics and Computers in Science and Engineering, series 8:21-26 ISSN:2227-4588 ISBN:978-1-61804-165-4.
  • Bender, T., Munk, C., Pfreim, A., Damay, J., Fredon, E., Rémond, R., Méausoone, P. J., Akong, F. O., Gérardin, P. and Jousserand, M. (2022) Influence of Thermal Modification on the impregnability of Beech (Fagus sylvatica [L.]) and European Maple (Acer pseudoplatanus [L.]). Proceedings of the 10th European Conference on Wood Modification (ECWM10) 2022, Nancy, France.
  • Beqo, S., Lato, E., Thoma, H. and Quku, D. (2015) The determination of brinnell hardness for beech wood (Fagus sylvatica L) in Albania. International Journal of Current Engineering and Technology, 5(6), 3593–3595.
  • Boonstra, M. J., van Acker, J., Kegel, E. and Stevens, M. (2007) Optimisation of a two-stage heat treatment process: durability aspects. Wood Science and Technology, 41, 31–57. doi:10.1007/s00226-006-0087-4
  • Brus, R. (2012) Drevesne vrste na slovenskem (ENG: Tree species in Slovenia) (2nd edition). Ljubljana: Self-published).
  • Čekovska, H., Gaff, M., Osvald, A., Kačik, F., Kubš, J. and Kaplan, L. (2017) Fire resistance of thermally modified spruce wood. BioResources, 12(1), 947–959.
  • CEN (2019) EN 13501-1 Fire Classification of Construction Products and Building Elements - Part 1: Classification Using Data from Reaction to Fire Tests (Brussels: European committee for standardisation).
  • CEN (2020a) EN 113-1 Wood Preservatives - Test Method for Determining the Protective Effectiveness Against Wood Destroying Basidiomycetes - Determination of the Toxic Values (Brussels: European committee for standardisation).
  • CEN (2020b) EN 13823 Reaction to Fire Tests for Building Products - Building Products Excluding Floorings Exposed to the Thermal Attack by a Single Burning Item (Brussels: European committee for standardisation).
  • CEN (2020c) EN 1534 Wood Flooring and Parquet - Determination of Resistance to Indentation – Test Method (Brussels: European committee for standardisation).
  • Connolly, J. H., Shortle, W. C. and Jellison, J. (1999) Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Canadian Journal of Botany, 77, 179–187. doi:10.1139/b99-018
  • Das Murtey, M. and Ramasamy, P. (2016) Sample preparations for scanning electron microscopy – life sciences. In M. Janecek, and R. Kral (eds.), Modern Electron Microscopy in Physical and Life Sciences (Rijeka: IntechOpen). 161–185. doi:10.5772/61720
  • Dunningham, E. and Sargent, R. (2015) Review of New and Emerging International Wood Modification Technologies (Melbourne: Forest & Wood Products of Australia).
  • Eder, M., Schäffner, W., Burgert, I. and Fratzl, P. (2021) Wood and the activity of dead tissue. Advanced Materials, 33, doi:10.1002/adma.202001412
  • Esteves, B. M. and Pereira, H. M. (2009) Wood modification by heat treatment: A review. BioResources, 4(1), 370–404. doi:10.15376/biores.4.1.Esteves
  • Fengel, D. and Wegener, G. (1984) Wood: Chemistry, Ultrastructure, Reactions (Berlin, Germany: Walter de Gruyter).
  • Gašparik, M. and Gaff, M. (2015) Influence of densification on bending strength of beech wood. Wood research, 60(2), 211–218.
  • Gennari, E., Picchio, R. and Lo Monaco, A. (2021) Industrial heat treatment of wood: study of induced effects on ayous wood (Triplochiton scleroxylon K. Schum). Forests, 12(6), 730. doi:10.3390/f12060730
  • Gorišek, Ž (2009) Les - Zgradba in lastnosti. Njegova variabilnost in heterogenost. (ENG: Wood - Structure and properties. Its variability and heterogeneity.). (Ljubljana: Biotehniška fakulteta, Oddelek za lesarstvo).
  • Gryc, V., Vavrčík, H. and Gomola, Š (2008) Selected properties of European beech (Fagus sylvatica L.). Journal of Forest Science, 54, 418–425. doi:10.17221/59/2008-JFS
  • Guggiari, M., Bloque, R., Aragno, M., Verrecchia, E., Job, D. and Junier, P. (2011) Experimental calcium-oxalate crystal production and dissolution by selected wood-rot fungi. International Biodeterioration & Biodegradation, 65(6), 803–809. doi:10.1016/j.ibiod.2011.02.012
  • Guo, H., Luković, M., Mendoza, M., Schlepütz, C. M., Griffa, M., Xu, B., Gaan, S., Herrmann, H. and Burgert, I. (2019) Bioinspired struvite mineralization for fire-resistant wood. ACS Applied Materials & Interfaces, 11(5), 5427–5434. doi:10.1021/acsami.8b19967
  • Hill, C. A. S. (2006) Wood Modification: Chemical, Thermal and Other Processes (NJ, USA: John Wiley and Sons).
  • Huang, L., Yao, X., Huang, Y. and Wang, Q. (2018) The preparation of CaCO3/wood composites using a chemical precipitation method and its flame-retardant and mechanically beneficial properties. Bioresources, 13(3), 6694–6706.
  • Humar, M., Repič, R., Kržišnik, D., Lesar, B., Cerc Korošec, R., Brischke, C., Emmerich, L. and Rep, G. (2020) Quality control of thermally modified timber using dynamic vapor sorption (DVS) analysis. Forests, 11, 666. doi:10.3390/f11060666
  • ISO (2014) ISO 13061-3 Physical and Mechanical Properties of Wood — Test Methods for Small Clear Wood Specimens - Part 3: Determination of Ultimate Strength in Static Bending (Geneva, Switzerland: International Organization for Standardization).
  • ISO (2018) ISO 5660-1 Reaction-to-Fire Tests - Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement) (Geneva, Switzerland: International Organization for Standardization).
  • Kollman, F. (1951) Technologie des Holzes und der Holzwerkstoffe (2nd Ed). Berlin., Germany: SpringerVerlag).
  • Lebow, S. T. and Winandy, J. E. (1999) Effect of fire-retardant treatment on plywood pH and the relationship of pH to strength properties. Wood Science and Technology, 33, 285–298. doi:10.1007/s002260050116
  • Lesar, B., Straže, A. and Humar, M. (2011) Sorption properties of wood impregnated with aqueous solution of boric acid and montan wax emulsion. Journal of Applied Polymer Science, 120(3), 1337–1345. doi:10.1002/app.33196
  • Martín-Martínez, M. J. (2002) Adhesion science and engineering. Adhesion Science and Engineering, 2, 573–675. doi:10.1016/b978-044451140-9/50013-5
  • Maurice, S., Coroller, L., Debaets, S., Vasseur, V., Le Floch, G. and Barbier, G. (2011) Modelling the effect of temperature, water activity and pH on the growth of Serpula lacrymans. Journal of Applied Microbiology, 111(6), 1436–1446. doi:10.1111/j.1365-2672.2011.05161.x
  • Merk, V., Chanana, M., Gaan, S. and Burgert, I. (2016) Mineralization of wood by calcium carbonate insertion for improved flame retardancy. Holzforschung, 70(9), 867–876. doi:10.1515/hf-2015-0228
  • Merk, V., Chanana, M., Keplinger, T., Gaand, S. and Burgert, I. (2015) Hybrid wood materials with improved fire retardance by bio-inspired mineralisation on the nano- and submicron level. Green Chemistry, 17, 1423–1428. doi:10.1039/C4GC01862A
  • Meyer-Veltrup, L., Brischke, C., Alfredsen, G., Humar, M., Flæte, P. O., Isaksson, T., Brelid, P. L., Westin, M. and Jermer, J. (2017) The combined effect of wetting ability and durability on outdoor performance of wood: development and verification of a new prediction approach. Wood Science and Technology, 51(3), 615–637. doi:10.1007/s00226-017-0893-x
  • Militz, H. and Altgen, M. (2014) Acs symposium series. Deterioration and Protection of Sustainable Biomaterials, 1158, 269–285. doi:10.1021/bk-2014-1158.ch016
  • Moya, R., Gaitan-Alvarez, J., Barrocal, A. and Araya, F. (2020) Effect of CaCO3 on the wood properties of tropical Hardwood species from fast-growth plantation in Costa Rica. Bioresources, 15(3), 4802–4822.
  • Odppes, G. F., Bulle, C. and Ugaya, C. M. L. (2021) Wood forest resource consumption impact assessment based on a scarcity index accounting for wood functionality and substitutability (WoodSI). The International Journal of Life Cycle Assessment, 26, 1045–1061. doi:10.1007/s11367-021-01880-7
  • Ozyhar, T., Tschannen, C., Hilty, F., Thoemen, H., Schoelkopf, J. and Zoppe, J. O. (2021) Mineral-based composition with deliquescent salt as flame retardant for melamine–urea–formaldehyde (MUF)-bonded wood composites. Wood Science and Technology, 55, 5–32. doi:10.1007/s00226-020-01230-0
  • Poncsak, S., Kocaefe, D., Younsi, R., Kocaefe, Y. and Gastonguay, L. (2009) Thermal treatment of electrical Poles. Wood Science and Technology, 43, 471–486. doi:10.1007/s00226-009-0243-8
  • Pondelak, A., Sever Škapin, A., Knez, N., Knez, F. and Pazlar, T. (2021b) Improving the flame retardancy of wood using an eco-friendly mineralisation process. Green Chemistry, 23, 1130. doi:10.1039/D0GC03852K
  • Pondelak, A., Sever Škapin, A., Knez, N., Repič, R., Škrlep, L., Pazlar, T., Knez, F. and Legat, A. (2021a) A Process of Wood Mineralisation Using Acetoacetate Solutions to Improve the Essential Properties of Wood. Patent Number: SI25944A 2021-06-30 (Ljubljana: The Slovenian Intellectual Property Office).
  • Raspor, P., Smole-Možina, S., Podjavoršek, J., Pohleven, F., Gogala, N., Nekrep, V. F. and Hacin, J. (1995) ZIM: Collection of industrial microorganisms. Catalogue of Cultures (Ljubljana: University of Ljubljana, Biotechnical Faculty).
  • Rep, G. and Pohleven, F. (2002) Modifikacija lesa - obećavajuća metoda za zaštitu drva (ENG: Wood modification - a promising method for wood preservation). Drvna industrija, 52(2), 71–76.
  • Rep, G., Pohleven, F. and Košmerl, S. (2012) Development of the industrial kiln for thermal wood modification by a procedure with an initial vacuum and commercialisation of modified Silvapro wood. in: Proceedings of the 6th European Conference on Wood Modification, 11–17.
  • Repič, R., Pondelak, A., Kržišnik, D., Humar, M. and Sever Škapin, A. (2022) Combining mineralisation and thermal modification to improve the fungal durability of selected wood species. Journal of Cleaner Production, 351, 131530. doi:10.1016/j.jclepro.2022.131530
  • Sandberg, D., Kutnar, A. and Mantanis, G. (2017) Wood modification technologies - a review. Iforest - Biogeosciences and Forestry, 10, 895–908. doi:10.3832/ifor2380-010
  • Schmidt, O. (2006) Wood and tree fungi: Biology, damage, protection, and use. In D. Czeschlik (ed.), Wood and TreeFungi: Biology, Damage, Protection, and Use. (Heidelberg, Germany: Springer Berlin). doi:10.1007/3-540-32139-X
  • Sedlar, T., Sinković, T., Perić, I., Jarc, A., Stojnić, S. and Šefc, B. (2019) Tvrdoća toplinski modificirane bukovine i grabovine. Šumarski List, 143(9-10), 433–433. doi:10.31298/sl.143.9-10.4
  • Singh, T. and Singh, A. P. (2012) A review on natural products as wood protectant. Wood Science and Technology, 46, 851–870. doi:10.1007/s00226-011-0448-5
  • Skaravelis, M. and Mantanis, G. I. (2013) Physical and mechanical properties of beech wood harvested in the Greek public forests. Wood Research, 58(1), 123–130.
  • Škrlep, L., Pondelak, A. and Sever Škapin, A. (2014) Postopek utrjevanja poroznih mineralnih gradbenih materialov in uporaba raztopin kalcijevega acetoacetata v ta namen (ENG: The Consolidation of Porous Mineral Building Materials and the use of Calcium Acetoacetate Solutions for This Purpose). Patent Number: Si 24392 (A) (Ljubljana: The Slovenian Intellectual Property Office).
  • Taghiyari, H. R. (2012) Fire-retarding properties of nano-silver in solid woods. Wood Science and Technology, 46, 939–952. doi:10.1007/s00226-011-0455-6
  • Tao, Y., Li, P., Cai, L. and Shi, S. Q. (2019) Flammability and mechanical properties of composites fabricated with CaCO3-filled pine flakes and Phenol Formaldehyde resin. Composites Part B: Engineering, 167, 1–6. doi:10.1016/j.compositesb.2018.12.005
  • Thaler, N., Lesar, B., Kariž, M. and Humar, M. (2012) Bioincising of Norway spruce wood using wood inhabiting fungi. International Biodeterioration & Biodegradation, 68, 51–55. doi:10.1016/j.ibiod.2011.11.014
  • Thybring, E. E., Kymäläinen, M. and Rautkari, L. (2018) Moisture in modified wood and its relevance for fungal decay. iForest - Biogeosciences and Forestry, 11, 418–422. doi:10.3832/ifor2406-011
  • Turkulin, H., Holzer, L., Richter, K. and Sell, J. (2005) Application of the ESEM technique in wood research: part I. optimization of imaging parameters and working conditions. Wood and Fiber Science, 37(4), 552–564.
  • Wagenführ, R. (2007) Holzatlas: mit zahlreichen Abbildungen (ENG = Atlas of Wood: with Numerous Illustrations) (Leipzig: Fachbuchverlag).
  • Welzbacher, C. R., Rassam, G., Talaei, A. and Brischke, C. (2011) Microstructure, strength and structural integrity of heat-treated beech and spruce wood. Wood Material Science and Engineering, 6(4), 219–227. doi:10.1080/17480272.2011.622411
  • Yona, A. M. C., Žigon, J., Pavlič, M. and Petrič, M. (2021) Potentials of silicate-based formulations for wood protection and improvement of mechanical properties: A review. Wood Science and Technology, 55, 887–918. doi:10.1007/s00226-021-01290-w
  • Zelaya-Lainez, L., Lahayne, O., Balduzzi, G. and Hellmich, C. (2019) Micromechanics of non-embedded spruce wood: Novel polishing and indentation protocol. In R. Zemick, and J. Krystek (eds.), Conference Proceedings 157-158. 36th Danubia Adria Symposium on Advances in Experimental Mechanics (Pilsen, Czech Republic: University of West Bohemia). 157–158.
  • Zelinka, S. L., Altgen, M., Emmerich, L., Guigo, N., Keplinger, T., Kymäläinen, M. and Thybring, E. E. (2022) Review of wood modification and wood functionalization technologies. Forests, 13(7), 1004. doi:10.3390/f13071004