93
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A comparative study of structural changes in loblolly pine wood following incubation with the fungus Physisporinus vitreus and the bacterium Bacillus subtilis

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 931-943 | Received 13 Jun 2023, Accepted 01 Dec 2023, Published online: 17 Dec 2023

References

  • Baker, J.B. and Langdon, O.G., 1990. Pinus taeda L., Loblolly Pine. In: R.M. Burns and B.H. Honkala, eds. Silvics of North America, volume 1, Conifers. Washington, DC: U.S. Department of Agriculture, Forest Service, Agriculture Handbook 654, 497–512.
  • Bakir, D., et al., 2021. Evaluation of pit dimensions and uptake of preservative solutions in wood after permeability improvement by bioincising. Wood Material Science & Engineering, 18 (1), 1–11. https://doi.org/10.1080/17480272.2021.2014956.
  • Bakir, D., Dogu, D., and Nami kartal, S., 2022. Anatomical structure and degradation characteristics of bioincised oriental spruce wood by Physisporinus vitreus. Wood Material Science & Engineering, 17 (6), 834–845. https://doi.org/10.1080/17480272.2021.1964594.
  • Bari, E., et al., 2021. Characterizations of tree-decay fungi by molecular and morphological investigations in an Iranian Alamdardeh forest. Maderas. Ciencia y tecnología, 23. https://doi.org/10.4067/S0718-221X2021000100433×2021000100433.
  • Bari, E., Schmidt, O., and Oladi, R., 2015. A histological investigation of Oriental beech wood decayed by Pleurotus ostreatus and Trametes versicolor. Forest Pathology, 45 (5), 349–357. https://doi.org/10.1111/efp.12174.
  • Embacher, J., et al., 2023. Wood decay fungi and their bacterial interaction partners in the built environment–A systematic review on fungal bacteria interactions in dead wood and timber. Fungal Biology Reviews, 45, 100305. https://doi.org/10.1016/j.fbr.2022.100305.
  • EN 113, 2004. Wood preservatives – Test method for determining the protective effectiveness against wood destroying basidiomycetes – Determination of toxic values. Brussels, Belgium: European Committee for Standardization (CEN).
  • EN 350, 2016. Durability of wood and wood-based products – Testing and classification of the resistance to biological agents, the permeability to water and the performance of wood and wood-based materials. Brussels, Belgium: European Committee for Standardization (CEN).
  • Erickson, H.D., 1970. Permeability of southern pine wood-a review. Wood Science, 2 (3), 149–158.
  • Eriksson, K. E., Blanchette, R., and Ander, P., 1990. Morphological aspects of wood degradation by fungi and bacteria. In: Microbial and enzymatic degradation of wood and wood components. Springer series in wood science. Berlin: Springer, 1–87.
  • Esteves, B., et al., 2013. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Ciencia y tecnología, 15 (2), 245–258.
  • Fang, X., et al., 2023. Treatability changes of radiata pine heartwood induced by white-rot fungus Trametes versicolor. Forests, 14 (5), 1040. https://doi.org/10.3390/f14051040.
  • Ferreira, B.G., et al., 2017. Preventing false negatives for histochemical detection of phenolics and lignins in PEG-embedded plant tissues. Journal of Histochemistry & Cytochemistry, 65 (2), 105–116. https://doi.org/10.1369/0022155416677035.
  • Flynn, K.A., 1995. A review of the permeability, fluid flow, and anatomy of spruce (Picea spp). Wood and Fiber Science, 27 (3), 278–284.
  • Fogg, P. J., 1968. Longitudinal air permeability of southern pine wood. Ph.D. dissertation. Louisiana State University and Agricultural & Mechanical College, Baton Rouge, LA, USA, 153.
  • Fuhr, M.J., et al., 2011. Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biology, 115 (9), 919–932. https://doi.org/10.1016/j.funbio.2011.06.017.
  • Fuhr, M.J., et al., 2012. Automated quantification of the impact of the wood-decay fungus Physisporinus vitreus on the cell wall structure of Norway spruce by tomographic microscopy. Wood Science and Technology, 46, 769–779. https://doi.org/10.1007/s00226-011-0442-y.
  • Gärtner, H. and Schweingruber, F.H., 2013. Microscopic preparation techniques for plant stem analysis. Remagen: Kessel Publishing House.
  • Gelbrich, J., Mai, C., and Militz, H., 2008. Chemical changes in wood degraded by bacteria. International Biodeterioration & Biodegradation, 61 (1), 24–32. https://doi.org/10.1016/j.ibiod.2007.06.007.
  • Gilani, S., et al., 2017. Fracture in Norway spruce wood treated with Physisporinus vitreus. Wood Science and Technology, 51, 195–206. https://doi.org/10.1007/s00226-016-0873-6.
  • Goodell, B., Winandy, J.E., and Morrell, J.J., 2020. Fungal degradation of wood: emerging data, new insights and changing perceptions. Coatings, 10 (12), 1210. https://doi.org/10.3390/coatings10121210.
  • Hacke, U.G., Sperry, J.S., and Pittermann, J., 2004. Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes. American Journal of Botany, 91 (3), 386–400. https://doi.org/10.3732/ajb.91.3.386.
  • Harris, J.M., 1954. Heartwood formation in Pinus radiata (D. Don.). New Phytologist, 53 (3), 517–524. https://doi.org/10.1111/j.1469-8137.1954.tb05258.x.
  • Henriksson, G. and Teeri, T., 2009. 12. Biotechnology in the forest industry. In: M. Ek, G. Gellerstedt, and G. Henriksson, eds. Volume 1 wood chemistry and wood biotechnology. Berlin: De Gruyter, 273–300. https://doi.org/10.1515/9783110213409.273.
  • Kong, W., et al., 2017. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnology for Biofuels, 10 (1), 1–15. https://doi.org/10.1186/s13068-017-0906-x.
  • Kotowska, M.M., et al., 2020. Within-tree variability and sample storage effects of bordered pit membranes in xylem of Acer pseudoplatanus. Trees, 34, 61–71. https://doi.org/10.1007/s00468-019-01897-4.
  • Lehringer, C., et al., 2010. Anatomy of bioincised Norway spruce wood. International Biodeterioration and Biodegradation, 64 (5), 346–355. https://doi.org/10.1016/j.ibiod.2010.03.005.
  • Lehringer, C., 2011. Permeability improvement of Norway spruce wood with the white rot fungus Physisporinus vitreus. PhD thesis, Georg-August-University, Göttingen. http://webdoc.sub.gwdg.de/diss/2011/lehringer/lehringer.pdf
  • Lehto, J., et al., 2018. Characterization of alkali-extracted wood by FTIR-ATR spectroscopy. Biomass Conversion and Biorefinery, 8, 847–855. https://doi.org/10.1007/s13399-018-0327-5.
  • Levy, J.F. 1975. Bacteria associated with wood in ground contact. In: W. Liese, ed. Biological transformation of wood by microorganisms. Berlin: Springer. https://doi.org/10.1007/978-3-642-85778-2_6.
  • MacWilliams, M.P. and Liao, M.K. (2006) Luria broth (LB) and Luria agar (LA) media and their uses protocol. American Society for Microbiology. https://asm.org/getattachment/5d82aa34-b514-4d85-8af3-aeabe6402874/LB-Luria-Agar-protocol-3031.pdf
  • Maruta, E., et al., 2022. Pit aspiration causes an apparent loss of xylem hydraulic conductivity in a subalpine fir (Abies mariesii Mast.) overwintering at the alpine timberline. Tree Physiology, 42 (6), 1228–1238. https://doi.org/10.1093/treephys/tpab173.
  • Messner, K., Bruce, A., and Bongers, H.P.M., 2003. Treatability of refractory wood species after fungal pre-treatment. In The First European Conference on Wood Modification. Ghent, Belgium, 389–401.
  • Mortabit, D., Zyani, M., and Koraichi, S.I., 2014. Psychrophilic wood-inhabiting bacteria at the old Medina of Fez. International Journal of Innovative Science. Engineering & Technology, 1 (9), 102–110.
  • Pandey, K.K. and Pitman, A.J., 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration and Biodegradation, 52 (3), 151–160. https://doi.org/10.1016/S0964-8305(03)00052-0.
  • Pánek, M. and Reinprecht, L., 2011. Bacillus subtilis for improving spruce wood impregnability. BioResources, 6 (3), 2912–2931. https://doi.org/10.15376/biores.6.3.2912-2931.
  • Råberg, U., et al., 2005. Testing and evaluation of natural durability of wood in above ground conditions in Europe–an overview. Journal of Wood Science, 51, 429–440. https://doi.org/10.1007/s10086-005-0717-8.
  • Sajitha, K.L., Dev, S.A., and Maria Florence, E.J., 2018. Biocontrol potential of Bacillus subtilis B1 against sapstain fungus in rubber wood. European Journal of Plant Pathology, 150 (1), 237–244. https://doi.org/10.1007/s10658-017-1272-z.
  • Salim, M., et al., 2021. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Science and Technology, 55, 295–313. https://doi.org/10.1007/s00226-020-01258-2.
  • Salin, J.G., 2006. Drying of sapwood analyzed as an invasion percolation process. Maderas: Ciencia y Tecnología, 8 (3), 149–158.
  • Schmidt, O., et al., 1997. Wood decay by the white-rotting basidiomycete Physisporinus vitreus from a cooling tower. Holzforschung, 51, 193–200. https://doi.org/10.1515/hfsg.1997.51.3.193.
  • Schmidt, O., Gaiser, O., and Dujesiefken, D., 2012. Molecular identification of decay fungi in the wood of urban trees. European Journal of Forest Research, 131, 885–891. https://doi.org/10.1007/s10342-011-0562-9.
  • Schubert, M., et al., 2011. Resistance of bioincised wood treated with wood preservatives to blue-stain and wood-decay fungi. International Biodeterioration and Biodegradation, 65 (1), 108–115. https://doi.org/10.1016/j.ibiod.2010.10.003.
  • Schwarze, F.W.M.R., et al., 2006. Permeability changes in heartwood of Picea abies and Abies alba induced by incubation with Physisporinus vitreus. Holzforschung, 60 (4), 450–454. https://doi.org/10.1515/HF.2006.071.
  • Schwarze, F.W.M.R., 2007. Wood decay under the microscope. Fungal Biology Reviews, 21 (4), 133–170. https://doi.org/10.1016/j.fbr.2007.09.001.
  • Schwarze, F.W.M.R. and Landmesser, H., 2000. Preferential degradation of pit membranes within tracheids by the basidiomycete Physisporinus vitreus. Holzforschung, 54, 461–462. https://doi.org/10.1515/HF.2000.077.
  • Schwarze, F.W.M.R. and Schubert, M., 2011. Physisporinus vitreus: a versatile white rot fungus for engineering value-added wood products. Applied Microbiology and Biotechnology, 92, 431–440. https://doi.org/10.1007/s00253-011-3539-1.
  • Schwarze, F.W.M.R., Spycher, M., and Fink, S., 2008. Superior wood for violins–wood decay fungi as a substitute for cold climate. New Phytologist, 179 (4), 1095–1104. https://doi.org/10.1111/j.1469-8137.2008.02524.x.
  • Sheng, J., et al., 2020. Changes in the chemical composition of young Chinese fir wood exposed to different soil temperature and water content. Cellulose, 27, 4067–4077. https://doi.org/10.1007/s10570-020-03039-3.
  • Singh, A.P. and Singh, T., 2014. Biotechnological applications of wood-rotting fungi: a review. Biomass and Bioenergy, 62, 198–206. https://doi.org/10.1016/j.biombioe.2013.12.013.
  • Stange, S. and Wagenführ, A., 2022. 70 years of wood modification with fungi. Fungal Biology and Biotechnology, 9 (1), 7. https://doi.org/10.1186/s40694-022-00136-9.
  • Sun, B., et al., 2015. Natural bamboo (Neosinocalamus affinis Keng) fiber identification using FT-IR and 2D-IR correlation spectroscopy. Journal of Natural Fibers, 12 (1), 1–11. https://doi.org/10.1080/15440478.2013.796907.
  • Tarmian, A., et al., 2020. Treatability of wood for pressure treatment processes: a literature review. European Journal of Wood and Wood Products, 78, 635–660. https://doi.org/10.1007/s00107-020-01541-w.
  • Thaler, N., et al., 2012. Bioincising of Norway spruce wood using wood inhabiting fungi. International Biodeterioration and Biodegradation, 68, 51–55. https://doi.org/10.1016/j.ibiod.2011.11.014.
  • Thomas, R.J. and Kringstad, K.P., 1971. The role of hydrogen bonding in pit aspiration. Holzforschung, 25 (5), 143–149. https://doi.org/10.1515/hfsg.1971.25.5.143.
  • Tomak, E.D., et al., 2013. An FT-IR study of the changes in chemical composition of bamboo degraded by brown-rot fungi. International Biodeterioration & Biodegradation, 85, 131–138. https://doi.org/10.1016/j.ibiod.2013.05.029.
  • Yang, Y., et al., 2021. Fourier-transform infrared spectroscopy analysis of the changes in chemical composition of wooden components: part II—The ancient building of Danxia Temple. Forest Products Journal, 71 (3), 283–289. https://doi.org/10.13073/FPJ-D-21-00015.
  • Yildiz, S., et al., 2012. Improving of the impregnability of refractory spruce wood by Bacillus licheniformis pretreatment. BioResources, 7 (1), 565–577. https://doi.org/10.15376/biores.7.1.565-577.
  • Zahedi Tajrishi, I., et al., 2016. The modifying effect of different Bacillus subtilis strains on permeability of pine (Pinus taeda) in two different culture media. Iranian Journal of Wood and Paper Science Research, 31 (2), 309–322. https://doi.org/10.22092/ijwpr.2016.105931.
  • Zahedi Tajrishi, I., et al., 2021. Biodegradation and microscale treatability pattern of loblolly pine heartwood bioincised by Bacillus subtilis and Physisporinus vitreus. Drvna Industrija, 72 (4), 365–372. https://doi.org/10.5552/drvind.2021.2034.
  • Zhang, Y., Klepsch, M., and Jansen, S., 2017. Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates. Plant, Cell and Environment, 40 (10), 2133–2146. https://doi.org/10.1111/pce.13014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.