648
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Wood-products value-chain mapping

ORCID Icon, ORCID Icon & ORCID Icon
Pages 955-965 | Received 19 Jan 2024, Accepted 06 Mar 2024, Published online: 25 Mar 2024

References

  • Ansell, M.P., 2015. Wood composites. Woodhead Publ. doi:10.1016/C2014-0-02700-1.
  • Bais-Moleman, A.L., et al., 2018. Assessing wood use efficiency and greenhouse gas emissions of wood product cascading in the European union. Journal of Cleaner Production, 172, 3942–3954. doi:10.1016/j.jclepro.2017.04.153.
  • Bajpai, P., 2015. Management of pulp and paper mill waste. Springer International Publishing. doi:10.1007/978-3-319-11788-1.
  • Bajpai, P., 2018. Biermann’s handbook of pulp and paper. Elsevier. doi:10.1016/C2017-0-00513-X.
  • Bergman, R.D. and Alanya-Rosenbaum, S., 2017. CORRIM Report: Life Cycle Assessment for the Production of PNW Laminated Veneer Lumber.
  • Brown, R.N., et al., 2012. The impact of timber-sale tract, policy, and administrative characteristics on state stumpage prices: An econometric analysis. Forest Policy and Economics, 21, 71–80. doi:10.1016/j.forpol.2011.10.001.
  • Churkina, G., et al., 2020. Buildings as a global carbon sink. Nature Sustainability, 3 (4), Article 4. doi:10.1038/s41893-019-0462-4.
  • Crocetti, R., Ekholm, K., and Kliger, R., 2016. Stress-laminated-timber decks: state of the art and design based on Swedish practice. European Journal of Wood and Wood Products, 74. doi:10.1007/s00107-015-0966-1.
  • FAO, 2021. Circularity concepts in forest-based industries.
  • FAO, 2022. Classification of forest products. FAO. doi:10.4060/cb8216en.
  • Forest Products Laboratory, 2021. Wood handbook—wood as an engineering material (p. 543). Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Gong, M., ed., 2022. Engineered wood products for construction. IntechOpen. doi:10.5772/intechopen.92960
  • Green, M. and Taggart, J., 2020. Tall wood buildings: design, construction and performance. second and expanded edition. Basel: Birkhäuser.
  • Hekkert, M.P., Joosten, L.A.J., and Worrell, E., 2000. Analysis of the paper and wood flow in The Netherlands.
  • Höglmeier, K., et al., 2015. LCA-based optimization of wood utilization under special consideration of a cascading use of wood. Journal of Environmental Management, 152, 158–170. doi:10.1016/j.jenvman.2015.01.018.
  • Höglmeier, K., Weber-Blaschke, G., and Richter, K., 2013. Potentials for cascading of recovered wood from building deconstruction—A case study for south-east Germany. Resources, Conservation and Recycling, 78, 81–91. doi:10.1016/j.resconrec.2013.07.004.
  • Hughes, M., 2015. Plywood and other veneer-based products. In: Wood composites. Elsevier, 69–89. doi:10.1016/B978-1-78242-454-3.00004-4.
  • Johnston, C.M.T. and Radeloff, V.C., 2019. Global mitigation potential of carbon stored in harvested wood products. Proceedings of the National Academy of Sciences, 116 (29), 14526–14531. doi:10.1073/pnas.1904231116.
  • Kasal, B. and Yan, L., 2021. Fiber-Reinforced polymers as reinforcement for timber structural elements. In: J. Branco, P. Dietsch, and T. Tannert, eds. Reinforcement of timber elements in existing structures: state-of-the-Art report of the RILEM TC 245-RTE. Springer International Publishing, 51–78. doi:10.1007/978-3-030-67794-7_4
  • Kitek Kuzman, M., et al., 2018. Architect perceptions of engineered wood products: An exploratory study of selected countries in Central and Southeast Europe. Construction and Building Materials, 179, 360–370. doi:10.1016/j.conbuildmat.2018.05.164.
  • Kromoser, B., et al., 2022. Circular economy in wood construction – Additive manufacturing of fully recyclable walls made from renewables: proof of concept and preliminary data. Construction and Building Materials, 344, 128219. doi:10.1016/j.conbuildmat.2022.128219.
  • Lähtinen, K., et al., 2017. Forest sector sustainability communication in Europe: a systematic literature review on the contents and gaps. Current Forestry Reports, 3 (3), 173–187. doi:10.1007/s40725-017-0063-2.
  • Lenglet, J., Courtonne, J.-Y., and Caurla, S., 2017. Material flow analysis of the forest-wood supply chain: a consequential approach for log export policies in France. Journal of Cleaner Production, 165, 1296–1305. doi:10.1016/j.jclepro.2017.07.177.
  • Leskinen, P., et al., 2018. Substitution effects of wood-based products in climate change mitigation (From science to policy). [From Science to Policy]. European Forest Institute, doi:10.36333/fs07.
  • Lokesh, K., Ladu, L., and Summerton, L., 2018. Bridging the gaps for a ‘circular’ bioeconomy: selection criteria, Bio-based value chain and stakeholder mapping. Sustainability, 10 (6), 1695. doi:10.3390/su10061695.
  • Luppold, W. and Bumgardner, M., 2016. U.S. hardwood lumber consumption and international trade from 1991 to 2014. Wood and Fiber Science, 48 (3), 162–170.
  • Lutz, J.F., 1978. Wood veneer: Log selection, cutting, and drying. Charlottesville, VA: Department of Agriculture, Forest Service.
  • Mair, C. and Stern, T., 2017. Cascading utilization of wood: A matter of circular economy? Current Forestry Reports, 3 (4), 281–295. doi:10.1007/s40725-017-0067-y.
  • Mantau, U., 2012. Wood flows in Europe (EU27).
  • Mantau, U., 2015. Wood flow analysis: quantification of resource potentials, cascades and carbon effects. Biomass and Bioenergy, 79, 28–38. doi:10.1016/j.biombioe.2014.08.013.
  • Massaro, F.M. and Malo, K.A., 2020. Stress-laminated timber decks in bridges: friction between lamellas, butt joints and pre-stressing system. Engineering Structures, 213, 110592. doi:10.1016/j.engstruct.2020.110592.
  • Mehr, J., et al., 2018. Environmentally optimal wood use in Switzerland—Investigating the relevance of material cascades. Resources, Conservation and Recycling, 131, 181–191. doi:10.1016/j.resconrec.2017.12.026.
  • Miyamoto, B.T., Sinha, A., and Morrell, I., 2020. Connection performance of mass plywood panels. Forest Products Journal, 70 (1), 88–99. doi:10.13073/FPJ-D-19-00056.
  • NAICS, 2022. NAICS Manual. https://www.census.gov/naics/reference_files_tools/2022_NAICS_Manual.pdf.
  • Niemz, P., Teischinger, A., and Sandberg, D., eds., 2023. Springer handbook of wood science and technology. Springer International Publishing. doi:10.1007/978-3-030-81315-4.
  • Oneil, E.E., 2021. Cradle to Gate Life Cycle Assessment of US Regional Forest Resources – US Northeast/North central.
  • Oneil, E. and Puettmann, M.E., 2017. A Life-Cycle Assessment of Forest Resources of the Pacific Northwest, USA*. Forest Products Journal, 67 (5–6), 316–330. doi:10.13073/FPJ-D-17-00011.
  • Ong, C.B., 2015. 7—Glue-laminated timber (Glulam). In: M. P. Ansell, ed. Wood composites. Woodhead Publishing, 123–140. doi:10.1016/B978-1-78242-454-3.00007-X.
  • Duryea, M.L., Landis, T.D., and Oregon State University, & United States, eds., 1984. Forest nursery manual: production of bareroot seedlings. Corvallis: M. Nijhoff/Dr W. Junk Publishers for Forest Research Laboratory.
  • Pramreiter, M., et al., 2023. A plea for the efficient use of wood in construction. Nature Reviews Materials, 8 (4), Article 4. doi:10.1038/s41578-023-00534-4.
  • Puettmann, M., 2019. CORRIM Report: Life Cycle Assessment for the Production of Northeast—Northcentral Softwood Lumber.
  • Puettmann, M., Kaestner, D., and Taylor, A., 2016a. CORRIM Report: Life Cycle Assessment for the Production of Oriented Strandboard Production.
  • Puettmann, M., Kaestner, D., and Taylor, A., 2016b. CORRIM Report: Life Cycle Assessment for the Production of PNW Softwood Plywood.
  • Puettmann, M., Salazar, J., and Consulting, C., 2018. Cradle to Gate Life Cycle Assessment of North American Particleboard Production.
  • Puettmann, M., Salazar, J., and Consulting, C., 2019. Cradle to Gate Life Cycle Assessment of North American Medium Density Fiberboard Production.
  • Puettmann, M., Sinha, A., and Ganguly, I., 2017. Life Cycle Assessment of Cross Laminated Timbers Produced in Oregon.
  • Ramage, M.H., et al., 2017. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333–359. doi:10.1016/j.rser.2016.09.107.
  • Risse, M., Weber-Blaschke, G., and Richter, K., 2017. Resource efficiency of multifunctional wood cascade chains using LCA and exergy analysis, exemplified by a case study for Germany. Resources, Conservation and Recycling, 126, 141–152. doi:10.1016/j.resconrec.2017.07.045.
  • Salvadori, V., 2021. Worldwide Structural Survey of 197 Multi-Storey Timber-Based Buildings From 5 to 24 Storeys.
  • Sandberg, D., Kuzman, M.K., and Gaff, M., 2018. Engineered wood products: wood as an engineering and architectural material. Prague: Czech University of Life Sciences, Faculty of Forestry and Wood Sciences.
  • Shi, S. and Walker, J.C.F., 2006. Wood-based composites: plywood and veneer-based products. In: Primary wood processing. Springer Netherlands, 391–426. doi:10.1007/1-4020-4393-7_11
  • Shmulsky, R. and David, J.P., 2019. Forest products and wood science (1st ed.). John Wiley & Sons, Ltd. doi:10.1002/9781119426400.
  • Sirkin, T. and Houten, M.t., 1994. The cascade chain: A theory and tool for achieving resource sustainability with applications for product design. Resources, Conservation and Recycling, 10 (3), 213–276. doi:10.1016/0921-3449(94)90016-7.
  • Slabohm, M., Mai, C., and Militz, H., 2022. Bonding acetylated veneer for engineered wood products—A review. Materials, 15 (10), 3665. doi:10.3390/ma15103665.
  • Smulski, S., 1997. Engineered wood products: A guide for specifiers, designers and users. Madison: PFS Research Foundation.
  • Sotayo, A., et al., 2020. Review of state of the art of dowel laminated timber members and densified wood materials as sustainable engineered wood products for construction and building applications. Developments in the Built Environment, 1, 100004. doi:10.1016/j.dibe.2019.100004.
  • Straže, A., Gornik Bučar, D., and Kropivšek, J., 2023. Identifikacija verig vrednosti v slovenskem gozdno-lesnem biogospodarstvu. Les/Wood, 72 (1), 21–34. doi:10.26614/les-wood.2023.v72n01a03.
  • Szichta, P., et al., 2022. Potentials for wood cascading: A model for the prediction of the recovery of timber in Germany. Resources, Conservation and Recycling, 178, 106101. doi:10.1016/j.resconrec.2021.106101.
  • Taskhiri, M.S., Garbs, M., and Geldermann, J., 2016. Sustainable logistics network for wood flow considering cascade utilisation. Journal of Cleaner Production, 110, 25–39. doi:10.1016/j.jclepro.2015.09.098.
  • Teischinger, A., 2017. From Forest to Wood Production – a selection of challenges and opportunities for innovative hardwood utilization.
  • Todoroki, C.L. and Rönnqvist, E.M., 1999. Combined primary and secondary log breakdown optimisation. Journal of the Operational Research Society, 50 (3), 219–229. doi:10.1057/palgrave.jors.2600699.
  • Toivonen, R.M., 2012. Product quality and value from consumer perspective—An application to wooden products. Journal of Forest Economics, 18 (2), 157–173. doi:10.1016/j.jfe.2011.12.004.
  • Williamson, T.G., 2002. APA engineered wood handbook. New York, NY: McGraw-Hill.
  • Woodall, C.W., et al., 2011. An overview of the forest products sector downturn in the United States. Forest Products Journal, 61 (8), 595–603. doi:10.13073/0015-7473-61.8.595.