0
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Geometric changes of TMP fibres due to thermo-hydrolytic disintegration of waste MDF evaluated by three fibre analysers

, , ORCID Icon, , & ORCID Icon
Received 12 Apr 2024, Accepted 18 Jul 2024, Published online: 30 Jul 2024

References

  • Beele, P.M., 2009. Demonstration of end uses for recovered MDF fibre. WRAP (Waste and Resources Action Programme) (Final report No. MDD005). Banbury, UK.
  • Benthien, J.T., et al., 2014. Effect of fiber size distribution on medium-density fiberboard properties caused by varied steaming time and temperature of defibration process. Wood and Fiber Science, 46, 175–185.
  • Benthien, J.T., Heldner, S., and Ohlmeyer, M., 2017. Investigation of the interrelations between defibration conditions, fiber size and medium-density fiberboard (MDF) properties. European Journal of Wood and Wood Products, 75, 215–232. doi:10.1007/s00107-016-1094-2.
  • Bütün Buschalsky, F.Y., and Mai, C., 2021a. Repeated thermo-hydrolytic disintegration of medium density fibreboards (MDF) for the production of new MDF. European Journal of Wood and Wood Products, 79, 1451–1459. doi:10.1007/s00107-021-01739-6.
  • Bütün Buschalsky, F.Y., and Mai, C., 2021b. Drainage in a screw press and utilization of the recovered fibres after thermo-hydrolytic disintegration of waste fibreboards. Recent Progress in Materials, 3 (3), 1–14. doi:10.21926/rpm.2103029.
  • Cöpür, Y., and Makkonen, H., 2007. Precision and accuracy studies with Kajaani fiber length analyzers. Journal of Applied Science, 7, 1043–1047. doi:10.3923/jas.2007.1043.1047.
  • Dix, B., Schäfer, M., and Roffael, E., 2001a. Einsatz von Faserstoffen aus chemisch-thermisch aufgeschlossenen, gebrauchten Faserplatten zur Herstellung von mitteldichten Faserplatten (MDF) - Using fibers from waste fiberboards pulped by a thermo-chemical process to produce MDF. Holz als Roh- und Werkstoff, 59, 276–276. doi:10.1007/s001070100210.
  • Dix, B., Schäfer, M., and Roffael, E., 2001b. Einsatz von Faserstoffen aus chemo-thermo-mechanisch (CTMP) aufgeschlossenen, gebrauchten Span- und Faserplatten zur Herstellung von mitteldichten Faserplatten (MDF) - Using fibers from waste particleboards and fiberboards pulped by a chemo-thermo-mechanical process to produce MDF. Holz als Roh- and Werkstoff, 59, 299–300. doi:10.1007/s001070100211.
  • FAO, 2019. Global forest products facts and figures 2018. Rome: FAO – Food and Agriculture Organization of the United Nations.
  • FAO, 2020. FAOSTAT – forestry production and trade [WWW Document]. http://www.fao.org/faostat/en/#data/FO (accessed 9.17.20).
  • Groom, L., Mott, L., and Shaler, S., 1999. Relationship between fiber furnish properties and structural performance of MDF. 33rd International Particleboard/Composite Material Symposium 1999, 13–15 April 1999, Pullman, Washington, USA.
  • Guay, D., et al., 2005. Comparison of fiber length analyzers. In: Proceedings of 2005 TAPPI Practical Papermaking Conference. Tappi Press, pp. 30–38.
  • Gusovius, H.J., et al., 2006. New quantitative image analysis method for the characterization of mineral and fibrous materials. XXIII International Mining Processing Congress. Presented at the XXIII International Mining Processing Congress, Istanbul, Turkey.
  • Hagel, S., et al., 2006. Recycling of waste MDF by steam refining: evaluation of fiber and paper strength properties. Waste and Biomass Valorization, 12, 5701–5713. doi:10.1007/s12649-021-01391-4.
  • Hirn, U., and Bauer, W., 2006. A review of image analysis based methods to evaluate fiber properties. Lenzing Berichte, 86, 96–105.
  • Imken, A.A.P., Plinke, B., and Mai, C., 2021. Characterisation of hardwood fibres used for wood fibre insulation boards (WFIB). European Journal of Wood and Wood Products, 79, 915–924. doi:10.1007/s00107-021-01698-y.
  • Irle, M., et al., 2019. Advanced recycling of post-consumer solid wood and MDF. Wood Material Science and Engineering, 14, 19–23. doi:10.1080/17480272.2018.1427144.
  • ISO 13322-1, 2014. Particle size analysis – image analysis methods – part 1: static image analysis methods.
  • ISO 13322-2, 2014. Particle size analysis – image analysis methods – part 2: dynamic image analysis methods.
  • ISO 9276-1, 2004. Representation of results of particle size analysis – part 1: graphical representation.
  • ISO 9276-6, 2008. Representation of results of particle size analysis – part 6: descriptive and quantitative representation of particle shape and morphology.
  • Kearley, V., and Goroyias, G., 2004. Wood panel recycling at a semi-industrial scale. In: Proceedings of the 8th European Panel Products Symposium, Llandudno, Wales, UK, 1–18.
  • Le Moigne, N., et al., 2011. A statistical analysis of fibre size and shape distribution after compounding in composites reinforced by natural fibres. Composites Part A: Applied Science and Manufacturing, 42, 1542–1550. doi:10.1016/j.compositesa.2011.07.012.
  • Liiri, O., Kivisto, A., and Saarinen, A., 1977. Einfluss von Holzart, Spangröße und Bindemittel auf die Festigkeit und die Quellung von Spanplatten mit höheren elastomechanischen Eigenschaften. Holzforschung und Holzverwertung, 29, 117–122.
  • Lubis, M.A.R., Hong, M.-K., and Park, B.-D., 2018. Hydrolytic removal of cured urea–formaldehyde resins in medium-density fiberboard for recycling. Journal of Wood Chemistry and Technology, 38, 1–14. doi:10.1080/02773813.2017.1316741.
  • Lykidis, C., and Grigoriou, A., 2008. Hydrothermal recycling of waste and performance of the recycled wooden particleboards. Waste Management, 28, 57–63. doi:10.1016/j.wasman.2006.11.016.
  • Michanickl, A., and Boehme, C., 2003. Method for recovering chips and fibers of bonded wood materials involves passing of steam through a vessel with such materials which have been soaked with a heated impregnation solution. European Union Patent No: DE10144793, WO03026859. DE10144793, WO03026859.
  • Mitchell, A., and Stevens, G., 2009. Life cycle assessment of closed loop MDF recycling: Microrelease trial (No. GR185). WRAP – Waste and Resources Action Programme, Banbury, UK.
  • Moezzipour, B., et al., 2018. Practical properties and formaldehyde emission of medium density fiberboards (MDFs) recycled by electrical method. European Journal of Wood and Wood Products, 76, 1287–1294. doi:10.1007/s00107-018-1291-2.
  • Müssig, J., and Schmid, H.G., 2004. Quality control of fibers along the value added chain by using scanning technique - from fibers to the final product. Microscopy and Microanalysis, 10, 1332–1333. doi:10.1017/S1431927604884320.
  • Nakos, P., Athanassiadou, E., and Coutinho, J.M.A., 2005. Production of high added value products from resin-bonded waste composite wood products. United States Patent No: US6841101B2. US6841101B2.
  • New, A.J., 2012. Recycling technology. European Union Patent No: EP2516730A1. EP2516730A1.
  • Nguyen, D.L., et al., 2023. Production of wood–based panel from recycled wood resource: a literature review. European Journal of Wood and Wood Products, 81, 557–570. doi:10.1007/s00107-023-01937-4.
  • Ohlmeyer, M., et al., 2015. Effects of refining parameters on fibre quality measured by fibre cube. In: Proceedings of the International Panel Products Symposium. Biocomposites Centre, Bangor, 17–25.
  • Padberg, J., Gliese, T., and Bauer, W., 2016. The influence of fibrillation on the oxygen barrier properties of films from microfibrillated cellulose. Nordic Pulp and Paper Research Journal, 31, 548–560. doi:10.3183/npprj-2016-31-04-p548-560.
  • Plinke, B., et al., 2016. Optische Größenvermessung von Holzpartikeln für die WPC-Herstellung – Vergleich dreier Messverfahren (Optical measurement of wood particles for WPC – comparison of three methods). Holztechnologie, 57, 43–50.
  • Plinke, B., Schirp, A., and Weidenmüller, I., 2012. Review: Methoden der Holzpartikelgrößenmessung – Von der technologischen Fragestellung zur aussagefähigen Statistik (Methods of wood particle size measurements - From the technical questions to informative statistics). Holztechnologie, 53, 11–17.
  • Riddiough, S., 2002. Wood panel recycling: an introduction to the fibersolve process. In: Proceedings of the 6th Panel Products Symposium. Llandudno, Wales, UK, 159–166.
  • Roffael, E., et al., 2010. Mitverwendung von UF-Harz-gebundenen Gebrauchtspan- und -faserplatten in der MDF-Herstellung (Use of UF-bonded recycling particle- and fibreboards in MDF-production). European Journal of Wood and Wood Products, 68, 121–128. doi:10.1007/s00107-009-0376-3.
  • Rowell, R.M., et al., 1993. Opportunities for composites from recycled waste wood-based resources: a problem analysis and research plan. Forest Product Journal, 43, 55–63.
  • Sandison, M., 2002. Method for the recovery of wood fiber from compressed fiberboard scrap, US6413364, United States Patent No: US6413364B1.
  • Savov, V., et al., 2023. Effect of hydrolysis regime on the properties of fibers obtained from recycling medium-density fiberboards. Fibers, 11, 64. doi:10.3390/fib11070064.
  • Schirp, A., Mannheim, M., and Plinke, B., 2014. Influence of refiner fibre quality and fibre modification treatments on properties of injection-moulded beech wood–plastic composites. Composites Part A: Applied Science and Manufacturing, 61, 245–257. doi:10.1016/j.compositesa.2014.03.003.
  • Schmid, H.G., and Schmid, G.P., 2006. Characterisation of high aspect ratio objects using the powdershape quantitative image analysis system. Presented at the European Congress and Exhibition on Powder Metallurgy (EURO PM), Ghent, Belgium, 2006.
  • Steffen, A., Janssen, A., and Kruse, K., 2001. Analyse der Herstellung von MDF mit Hilfe der statistischen Prozeßmodellierung (Analysis of the MDF production process by means of statistical process modelling). Holz als Roh- und Werkstoff, 58, 419–431. doi:10.1007/s001070050455.
  • Steinmann, W., and Saelhoff, A.-K., 2016. Essential properties of fibres for composite applications. In: S. Rana and R. Fangueiro, eds. Fibrous and textile materials for composite applications. Singapore: Springer, 39–73. doi:10.1007/978-981-10-0234-2_2.
  • Taylor, L., et al., 2020. Using fibre property measurements to predict the tensile index of microfibrillated cellulose nanopaper. Cellulose, 27, 6149–6162. doi:10.1007/s10570-020-03226-2.
  • Teuber, L., 2016. Evaluation of particle and fibre degradation during processing of wood plastic composites (WPC) using dynamic image analysis. PhD thesis at Georg-August University of Goettingen, Goettingen.
  • Teuber, L., Militz, H., and Krause, A., 2016. Dynamic particle analysis for the evaluation of particle degradation during compounding of wood plastic composites. Composites Part A: Applied Science and Manufacturing, 84, 464–471. doi:10.1016/j.compositesa.2016.02.028.
  • Wan, H., et al., 2014. Recycling wood composite panels: characterizing recycled materials. BioResources, 9, 7554–7565. doi:10.15376/biores.9.4.7554-7565.
  • Witt, W., Köhler, U., and List, J., 2004. Direct imaging of very fast particles opens the application of the powerful (dry) dispersion for size and shape characterization. Sympatec GmbH, System-Partikel-Technik, Clausthal-Zellerfeld, Germany.
  • Witt, W., Köhler, U., and List, J., 2007. Current limits of particle size and shape analysis with high speed image analysis. PARTEC2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.