650
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Modeling the integrated mine-to-client supply chain: a survey

, ORCID Icon, & ORCID Icon
Pages 247-293 | Received 01 Nov 2018, Accepted 04 Feb 2019, Published online: 05 Apr 2019

References

  • Statista, Mining – statistics & facts, 2017. Available at https://www.statista.com/topics/1143/mining/.
  • Técnico e Mineração, Mineração no Brasil Atual e sua Influência na Economia Nacional, 2014. Available at https://tecnicoemineracao.com.br/mineracao-brasil-atual-e-sua-influencia-na-economia-nacional/.
  • T. Bjørndal, I. Herrero, A. Newman, C. Romero, and A. Weintraub, Operations research in the natural resource industry, Int. Tran. Oper. Res. 19 (1–2) (2012), pp. 39–62. ISSN 1475-3995. doi:10.1111/j.1475-3995.2010.00800.x
  • L. Caccetta, Application of optimisation techniques in open pit mining, in Handbook of Operations Research in Natural Resources, A. Weintraub, C. Romero, T. Bjørndal, R. Epstein, and J. Miranda, eds., Springer, Boston, MA, 2007, pp. 547–559.
  • E. Kozan and S.Q. Liu, Operations research for mining: A classification and literature review, ASOR Bull. 30 (1) (2011), pp. 2–23. Available at https://eprints.qut.edu.au/48661/.
  • B.S. Pimentel, G.R. Mateus, and F.A. Almeida, Mathematical models for optimizing the global mining supply chain, in Intelligent Systems in Operations: Methods, Models and Applications in the Supply Chain, B. Nag, ed., Business Science Reference, Hershey, New York, 2010, pp. 133–163. ISBN 9781615206063. Available at https://books.google.com.br/books?id=2f7Qjx3oofIC.
  • F.P. Costa, Aplicações de técnicas de otimização a problemas de planejamento operacional de lavra em minas a céu aberto, PhD thesis, PPGEM–UFOP, Ouro Preto, MG, Brasil, 2005.
  • A.M. Newman, E. Rubio, R. Caro, A. Weintraub, and K. Eurek, A review of operations research in mine planning, Interfaces 40 (3) (2010), pp. 222–245. doi:10.1287/inte.1090.0492.
  • M. Osanloo, J. Gholamnejad, and B. Karimi, Long-term open pit mine production planning: A review of models and algorithms, Int. J. Min. Reclam. Environ. 22 (1) (2008), pp. 3–35. doi:10.1080/17480930601118947.
  • M.G. Raj, H. Vardhan, and Y.V. Rao, Production optimisation using simulation models in mines: A critical review, Int. J. Oper. Res. 6 (3) (2009), pp. 330–359. doi:10.1504/IJOR.2009.026937.
  • S. Chopra and P. Meindl, Supply Chain Management Strategy, Planning, and Operation, 6th ed., Pearson Education Limited, Edingurgh Gate, 2016.
  • M. Blom, A.R. Pearce, and P.J. Stuckey, Short-term planning for open pit mines: A review, Int. J. Min. Reclam. Environ. 0(2018), pp. 1–22.
  • M. Nehring, E. Topal, and P. Knights, Dynamic short term production scheduling and machine allocation in underground mining using mathematical programming, Min. Technol. 119 (4) (2010), pp. 212–220. ISSN 1474-9009. doi:10.1179/1743286310Y.0000000001.
  • E. Kozan and S.Q. Liu, A demand-responsive decision support system for coal transportation, Decis. Support Syst. 54 (2012 1), pp. 665–680. ISSN 0167-9236. Available at http://www.sciencedirect.com/science/article/pii/S0167923612002278.
  • C. Meagher, R. Dimitrakopoulos, and D. Avis, Optimized open pit mine design, pushbacks and the gap problem—A review, J. Min. Sci. 50 (3) (2014), pp. 508–526. ISSN 1573-8736. doi:10.1134/S1062739114030132
  • R. Laurich and B. Kennedy, Planning and design of surface mines, in Surface Mining chapter 5.2, B.A. Kennedy, ed., Port City Press, Baltimore, 1990, pp. 465–469
  • H. Lerchs and F. Grossman, Optimum design of open pit mines, CIM Bull. 58 (1965), pp. 47–54.
  • J.C. Picard, Maximal closure of a graph and applications to combinatorial problems, Manage. Sci. 22, 11 (1976), pp. 1268–1272. doi:10.1287/mnsc.22.11.1268
  • R. Underwood and B. Tolwinski, A mathematical programming viewpoint for solving the ultimate pit problem, Eur. J. Oper. Res. 107 (1) (1998), pp. 96–107. ISSN 0377-2217. Availabe at http://www.sciencedirect.com/science/article/pii/S0377221797001410.
  • D.S. Hochbaum and A. Chen, Performance analysis and best implementations of old and new algorithms for the open-pit mining problem, Oper. Res. 48 (6) (2000), pp. 894–914. Available at https://pubsonline.informs.org/doi/abs/10.1287/opre.48.6.894.12392.
  • M.W.A. Asad, Optimum cut-off grade policy for open pit mining operations through net present value algorithm considering metal price and cost escalation, Eng. Comput. 24 (7) (2007), pp. 723–736. ISSN 0264-4401. doi:10.1108/02644400710817961
  • M.W.A. Asad and E. Topal, Net present value maximization model for optimum cut-off grade policy of open pit mining operations, J. South Afr. Inst. Min. Metall. 111 (2011), pp. 741–750 ISSN 2225-6253.
  • E. Jélvez, N. Morales, and H. Askari-Nasab, A new model for automated pushback selection, Comput.Oper. Res. 4 (2018). ISSN 0305-0548. doi:10.1016/j.cor.2018.04.015
  • M. Rahmanpour and M. Osanloo, A decision support system for determination of a sustainable pit limit, J Clean Prod. 141 (2017), pp. 1249–1258. ISSN 0959-6526. Available at http://www.sciencedirect.com/science/article/pii/S0959652616315530.
  • Y.A. Sari and M. Kumral, Dig-limits optimization through mixed-integer linear programming in open- pit mines, J.Oper.Res. Soc. 69, 2 (2018), pp. 171–182. doi:10.1057/s41274-017-0201-z.
  • M.R. Ahmadi and R.S. Shahabi, Cutoff grade optimization in open pit mines using genetic algorithm, Resour. Policy. 55 (2018), pp. 184–191. ISSN 0301-4207 Available at http://www.sciencedirect.com/science/article/pii/S030142071730404X.
  • M.R. Ahmadi and A.A. Bazzazi, Cutoff grades optimization in open pit mines using meta-heuristic algorithms, Resour. Policy. 60, (2019), pp. 72–82. ISSN 0301-4207. doi:10.1016/j.resourpol.2018.12.001.
  • D. Klingman and N. Phillips, Integer programming for optimal phosphate-mining strategies, J.Oper.Res. Soc. 39 (9) (1988), pp. 805–810. doi:10.1057/jors.1988.140.
  • M. Osanloo and M. Ataei, Using equivalent grade factors to find the optimum cut-off grades of multiple metal deposits, Min. Eng. 16 (2003 8), pp. 771–776. ISSN 0892-6875. Available at https://www.sciencedirect.com/science/article/abs/pii/S0892687503001638.
  • P.A. Dowd, Risk assessment in reserve estimation and open-pit planning, Trans. Inst. Min. Metall. (Sec. A: Mining Industry) 103 (1994), pp. A148–A154.
  • R. Dimitrakopoulos, Conditional simulation algorithms for modelling orebody uncertainty in open pit optimisation, Int. J.Surf. Min. Reclam. Environ. 12, 4 (1998), pp. 173–179. doi:10.1080/09208118908944041.
  • R. Dimitrakopoulos, C.T. Farrelly, and M. Godoy, Moving forward from traditional optimization: Grade uncertainty and risk effects in open-pit design, Min. Technol. 111, 1 (2002), pp. 82–88. doi:10.1179/mnt.2002.111.1.82.
  • B. Groeneveld and E. Topal, Flexible open-pit mine design under uncertainty, J. Min. Sci. 47 (2) (2011), pp. 212–226. ISSN 1062-7391. doi:10.1134/S1062739147020080.
  • M.W.A. Asad and R. Dimitrakopoulos, Implementing a parametric maximum flow algorithm for optimal open pit mine design under uncertain supply and demand, J.Oper.Res. Soc. 64 (2) (2013), pp. 185–197. ISSN 1476-9360. doi:10.1057/jors.2012.26.
  • R. Dimitrakopoulos, L. Martinez, and S. Ramazan, A maximum upside/minimum downside approach to the traditional optimization of open pit mine design, J. Min. Sci. 43 (1) (2007), pp. 73–82. ISSN 1573-8736. doi:10.1007/s10913-007-0009-3.
  • S. Chatterjee, M.R. Sethi, and M.W.A. Asad, Production phase and ultimate pit limit design under commodity price uncertainty, Eur. J. Oper. Res. 248 (2) (2016), pp. 658–667. ISSN 0377-2217. Available at http://www.sciencedirect.com/science/article/pii/S0377221715006451.
  • I. Farmer and R. Dimitrakopoulos, Schedule-based pushback design within the stochastic optimisation framework, Int. J. Min. Reclam. Environ. 32 (5) (2018), pp. 327–340. ISSN 1748-0930. doi:10.1080/17480930.2017.1289606
  • M. Ataee-Pour, A critical survey of the existing stope layout optimization techniques, J. Min. Sci. 41 (5) (2005), pp. 447–466. ISSN 1573-8736. doi:10.1007/s10913-006-0008-9.
  • A.S. Nhleko, T. Tholana, and P.N. Neingo, A review of underground stope boundary optimization algorithms, Resour. Policy. 56 (2018), pp. 59–69. ISSN 0301-4207. Available at http://www.sciencedirect.com/science/article/pii/S0301420717303495.
  • E. Topal and J. Sens, A new algorithm for stope boundary optimization, J. Coal Sci. Eng. (China). 16 (2) (2010), pp. 113–119. ISSN 1006-9097. doi:10.1007/s12404-010-0201-y.
  • D.S.S. Sandanayake, E. Topal, and M.W. Ali Asad, A heuristic approach to optimal design of an underground mine stope layout, Appl. Soft. Comput. 30 (2015), pp. 595–603. ISSN 1568-4946. doi:10.1016/j.asoc.2015.01.060.
  • N. Grieco and R. Dimitrakopoulos, Managing grade risk in stope design optimisation: Probabilistic mathematical programming model and application in sublevel stoping, Min. Technol. 116 (2) (2007), pp. 49–57. ISSN 1474-9009. doi:10.1179/174328607X191038.
  • B. King, M. Goycoolea, and A. Newman, Optimizing the open pit-to-underground mining transition, Eur. J. Oper. Res. 257 (1) (2017), pp. 297–309. ISSN 0377-2217. Available at http://www.sciencedirect.com/science/article/pii/S0377221716305586.
  • D. Whittle, M. Brazil, P.A. Grossman, J.H. Rubinstein, and D.A. Thomas, Combined optimisation of an open-pit mine outline and the transition depth to underground mining, Eur. J. Oper. Res. 268 (2018), pp. 624–634. ISSN 0377-2217. doi:10.1016/j.ejor.2018.02.005
  • J. Amaya, D. Espinoza, M. Goycoolea, E. Moreno, T. Prevost, and E. Rubio, A scalable approach to optimal block scheduling, in Proceedings of APCOM, The Canadian Institute of Mining, Metallurgy and Petroleum, Vancouver, BC, 2009, pp. 567–575.
  • B. Koushavand, H. Askari-Nasab, and C.V. Deutsch, A linear programming model for long-term mine planning in the presence of grade uncertainty and a stockpile, Int. J. Min. Miner. Eng Sci. Technol. 24 (4) (2014), pp. 451–459. ISSN 2095-2686. doi:10.1016/j.ijmst.2014.05.006
  • M.E. Gershon, Optimal mine production scheduling: Evaluation of large scale mathematical program- ming approaches, Int.J. Min. Eng. 1 (4) (1983), pp. 315–329. doi:10.1007/BF00881548.
  • A. Lamghari and R. Dimitrakopoulos, A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty, Eur. J. Oper. Res. 222 (3) (2012), pp. 642–652. ISSN 0377-2217. doi:10.1016/j.ejor.2012.05.029.
  • A. Lamghari, R. Dimitrakopoulos, and J.A. Ferland, A variable neighbourhood descent algorithm for the open-pit mine production scheduling problem with metal uncertainty, J.Oper.Res. Soc. 65 (9) (2014), pp. 1305–1314. ISSN 1476-9360. doi:10.1057/jors.2013.81.
  • H. Askari-Nasab, K. Awuah-Offei, and H. Eivazy, Large-scale open pit production scheduling using mixed integer linear programming, Int. J. Min. Miner. Eng. 2 (3) (2010), pp. 185–214. doi:10.1504/IJMME.2010.037624.
  • H. Askari-Nasab, Y. Pourrahimian, E. Ben-Awuah, and S. Kalantari, Mixed integer linear programming formulations for open pit production scheduling, J. Min. Sci. 47 (3) (2011), pp. 338. ISSN 1573-8736. doi:10.1134/S1062739147030117.
  • N. Boland, I. Dumitrescu, and G. Froyland. A multistage stochastic programming approach to open pit mine production scheduling with uncertain geology. Optimization Online, 2008.
  • T.B. Johnson, Optimum open pit mine production scheduling, PhD thesis, California Univ Berkeley Operations Research Center, Berkeley, CA, 1968.
  • B. Samanta, A. Bhattacherjee, and R. Ganguli, A genetic algorithms approach for grade control planning in a bauxite deposit. In Proceedings of the 32nd International Symposium on Applications of Computers and Operations Research in the Mineral Industry, SME, Littleton, CO, 2005, pp. 337–342.
  • C. Cullenbine, R.K. Wood, and A. Newman, A sliding time window heuristic for open pit mine block sequencing, Optim. Lett. 5 (3) (2011), pp. 365–377. doi:10.1007/s11590-011-0306-2.
  • R. Chicoisne, D. Espinoza, M. Goycoolea, E. Moreno, and E. Rubio. A new algorithm for the open-pit mine scheduling problem, 2009.
  • R. Chicoisne, D. Espinoza, M. Goycoolea, E. Moreno, and E. Rubio, A new algorithm for the open-pit mine production scheduling problem, Oper. Res. 60 (3) (2012), pp. 517–528. doi:10.1287/opre.1120.1050.
  • H. Eivazy and H. Askari-Nasab, A mixed integer linear programming model for short-term open pit mine production scheduling, Min. Technol. 121 (2) (2012), pp. 97–108. doi:10.1179/1743286312Y.0000000006.
  • Y. Li, E. Topal, and S. Ramazan, Optimising the long-term mine waste management and truck schedule in a large-scale open pit mine, Min. Technol. 125 (1) (2016), pp. 35–46. ISSN 1474-9009. doi:10.1080/14749009.2015.1107343.
  • Y. Li, E. Topal, and S. Ramazan, Optimising the long term mine landform progression and truck hour schedule in a large scale open pit mine using mixed integer programming, in Advances in Applied Strategic Mine Planning, R. Dimitrakopoulos, ed., Springer In- ternational Publishing, Cham, 2018, pp. 669–686. ISBN 978-3-319-69320-0.
  • E. Moreno, M. Rezakhah, A. Newman, and F. Ferreira, Linear models for stockpiling in open- pit mine production scheduling problems, Eur. J. Oper. Res. 260 (2017 1), pp. 212–221. ISSN 0377-2217. Available at http://www.sciencedirect.com/science/article/pii/S0377221716310335.
  • E. Bakhtavar and H. Mahmoudi, Development of a scenario-based robust model for the optimal truck- shovel allocation in open-pit mining, Comput. Oper. Res. 8 (2018). ISSN 0305-0548. doi:10.1016/j.cor.2018.08.003.
  • K. Fytas, J. Hadjigeorgiou, and J.L. Collins, Production scheduling optimization in open pit mines, Int. J.Surf. Min. Reclam. Environ. 7 (1) (1993), pp. 1–9. ISSN 1389-5265. Available at http://www.tandfonline.com/doi/abs/10.1080/09208119308964677.
  • R. Goodfellow and R. Dimitrakopoulos, Simultaneous stochastic optimization of mining complexes and mineral value chains, Math Geosci. 49 (3) (2017), pp. 341–360. ISSN 1874-8953. doi:10.1007/s11004-017-9680-3.
  • L. Montiel and R. Dimitrakopoulos, Optimizing mining complexes with multiple processing and trans- portation alternatives: An uncertainty-based approach, Eur. J. Oper. Res. 247 (2015 1), pp. 166–178. ISSN 0377-2217. Available at http://www.sciencedirect.com/science/article/pii/S0377221715003720.
  • L. Montiel and R. Dimitrakopoulos, A heuristic approach for the stochastic optimization of mine production schedules, J.Heuristics. 23 (5) (2017), pp. 397–415. ISSN 1572-9397. doi:10.1007/s10732-017-9349-6.
  • A. Weintraub, M. Pereira, and X. Schultz, A priori and a posteriori aggregation procedures to reduce model size in mip mine planning models, Electron. Notes Discrete Math. 30 (SupplementC) (2008), pp. 297–302. ISSN 1571-0653. doi:10.1016/j.endm.2008.01.051
  • Y. Pourrahimian, H. Askari-Nasab, and D.D. Tannant, A multi-step approach for block-cave production scheduling optimization, Int. J. Min. Miner. Eng Sci. Technol. 23 (5) (2013), pp. 739–750. ISSN 2095-2686. doi:10.1016/j.ijmst.2013.08.019.
  • E. Busnach, A. Mehrez, and Z. Sinuany-Stern, A production problem in phosphate mining, J. Oper. Res. Soc. 36 (1985 4), pp. 285–288. ISSN 01605682, 14769360. Available at http://www.jstor.org/stable/2582414.
  • L. Caccetta and S.P. Hill, An application of branch and cut to open pit mine scheduling, J. Global Optim. 27 (2) (2003), pp. 349–365. ISSN 1573-2916. doi:10.1023/A:1024835022186.
  • B. Tolwinski and R. Underwood, A scheduling algorithm for open pit mines, IMA J. Manage. Math. 7 (3) (1996), pp. 247–270. doi:10.1093/imaman/7.3.247.
  • S. Ramazan and R. Dimitrakopoulos, Traditional and new MIP models for production scheduling with in-situ grade variability, Int. J.Surf. Min. Reclam. Environ. 18 (2) (2004), pp. 85–98. doi:10.1080/13895260412331295367.
  • R.A. Halatchev, A model of discounted profit variation of open pit production sequencing optimization, Application of Computers and Operations Research in the Mineral Industry-Proc. of the 32nd Int. Symposium on the Application of Computers and Operations Research in the Mineral Industry, APCOM 2005, AA Balkema Publishers, 2005, pp. 315–323.
  • S. Gilani and J. Sattarvand, Integrating geological uncertainty in long-term open pit mine production planning by ant colony optimization, Comput Geosci. 87 ISSN 0098-3004, (2016), pp. 31–40. doi:10.1016/j.cageo.2015.11.008.
  • N.L. Mai, E. Topal, O. Erten, and B. Sommerville, A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming, Resour. Policy. (2018). ISSN 0301-4207. Available at https://www.sciencedirect.com/science/article/abs/pii/S0301420717302763.
  • A. Lamghari and R. Dimitrakopoulos, Network-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertainty, Eur. J. Oper. Res. 250 (1) (2016), pp. 273–290. ISSN 0377-2217. doi:10.1016/j.ejor.2015.08.051.
  • A. Lamghari and R. Dimitrakopoulos, Progressive hedging applied as a metaheuristic to schedule production in open-pit mines accounting for reserve uncertainty, Eur. J. Oper. Res. 253 (2016 3), pp. 843–855. ISSN 0377-2217. Available at https://www.sciencedirect.com/science/article/pii/S0377221716301357.
  • I. Inthavongsa, C. Drebenstedt, J. Bongaerts, and P. Sontamino, Real options decision frame- work: Strategic operating policies for open pit mine planning, Resour. Policy. 47 (2016 3), pp. 142–153. ISSN 0301-4207. Available at https://www.sciencedirect.com/science/article/abs/pii/S0301420716300022.
  • C. Alford, M. Brazil, and D.H. Lee, Optimisation in underground mining, in Handbook of Operations Research in Natural Resources, A. Weintraub, C. Romero, T. Bjørndal, R. Epstein, and J. Miranda, eds., Springer, Boston, MA, 2007, pp. 561–577.
  • C. Musingwini, Optimization in underground mine planning - developments and opportunities, J. South Afr. Inst. Min. Metall. 116 (2016), pp. 809–820. ISSN 2225-6253. doi:10.17159/2411-9717/2016/v116n9a1.
  • W.M. Carlyle and B.C. Eaves, Underground planning at stillwater mining company, Interfaces. 31 (4) (2001), pp. 50–60. ISSN 0092-2102. doi:10.1287/inte.31.4.50.9669.
  • M. Nehring, E. Topal, M. Kizil, and P. Knights, An investigation to integrate optimum long-term planning with short planning in underground mine production scheduling. Mine Planning and Equipment Selection (MPES) Conference, Fremantle,WA, 2010.
  • M. Nehring, E. Topal, M. Kizil, and P. Knights, Integrated short- and medium-term underground mine production scheduling, J. South Afr. Inst. Min. Metall. 112 (2012), pp. 365–378 ISSN 2225-6253.
  • L. Montiel, R. Dimitrakopoulos, and K. Kawahata, Globally optimising open-pit and underground mining operations under geological uncertainty, Min. Technol. 125 (1) (2016), pp. 2–14. ISSN 1474-9009. doi:10.1179/1743286315Y.0000000027.
  • S.C. Sarin and J. West-Hansen, The long-term mine production scheduling problem, IIE Trans. 37 (2) (2005), pp. 109–121. ISSN 0740-817X. doi:10.1080/07408170490447339.
  • A.M. Newman and M. Kuchta, Using aggregation to optimize long-term production planning at an underground mine, Eur. J. Oper. Res. 176 (2) (2007), pp. 1205–1218. ISSN 0377-2217. doi:10.1016/j.ejor.2005.09.008.
  • E. Topal, Early start and late start algorithms to improve the solution time for long-term underground mine production scheduling, J. South Afr. Inst. Min. Metall. 108 (2008), pp. 99–107. ISSN 2225-6253.
  • M. Nehring, E. Topal, and J. Little, A new mathematical programming model for production schedule optimization in underground mining operations, J. South Afr. Inst. Min. Metall. 110 (2010), pp. 437–446. ISSN 2225-6253.
  • S.R. Dindarloo, M. Osanloo, and S. Frimpong, A stochastic simulation framework for truck and shovel selection and sizing in open pit mines, J. South Afr. Inst. Min. Metall. 115 (2015), pp. 209–219. ISSN 2225-6253. doi:10.17159/2411-9717/2015/v115n3a6
  • E. Topal and S. Ramazan, A new MIP model for mine equipment scheduling by minimizing maintenance cost, Eur. J. Oper. Res. 207 (2) (2010), pp. 1065–1071. ISSN 0377-2217. doi:10.1016/j.ejor.2010.05.037
  • M. Munirathinam and J.C. Yingling, A review of computer-based truck dispatching strategies for surface mining operations, Int. J.Surf. Min. Reclam. Environ. 8, 1 (1994), pp. 1–15. doi:10.1080/09208119408964750
  • S. Alarie and M. Gamache, Overview of solution strategies used in truck dispatching systems for open pit mines, Int. J.Surf. Min. Reclam. Environ. 16 (1) (2002), pp. 59–76. Available at https://www.tandfonline.com/doi/abs/10.1076/ijsm.16.1.59.3408.
  • C.N. Burt and L. Caccetta, Equipment selection for surface mining: A review, Interfaces. 44, 2 (2014), pp. 143–162. doi:10.1287/inte.2013.0732
  • F. Soumis, J. Ethier, and J. Elbrond, Truck dispatching in an open pit mine, Int. J.Surf. Min. Reclam. Environ. 3 (2) (1989), pp. 115–119. doi:10.1080/09208118908944263.
  • S. Naoum and A. Haidar, A hybrid knowledge base system and genetic algorithms for equipment selection, Eng. Constr. Archit. Manage. 7 (1) (2000), pp. 3–14. doi:10.1108/eb021128.
  • X. Gu, Q. Wang, X. Xu, J. Liu, T. Sun, and K. Du, Open pit waste removal optimization through equipment fleet scheduling, Trans. Nonferrous Met. Soc. China. 27 (12) (2017 12), pp. 2682–2690. ISSN 1003-6326. doi:10.1016/S1003-6326(17)60297-8.
  • S.R. Patterson, E. Kozan, and P. Hyland, Energy efficient scheduling of open-pit coal mine trucks, Eur. J. Oper. Res. 262 2 (2017), pp. 759–770. ISSN 0377-2217. Available at http://www.sciencedirect.com/science/article/pii/S0377221717303132.
  • C.H. Ta, J.V. Kresta, J.F. Forbes, and H.J. Marquez, A stochastic optimization approach to mine truck allocation, Int. J.Surf. Min. Reclam. Environ. 19 (2005 3), pp. 162–175. ISSN 1389-5265. Available at http://www.tandfonline.com/doi/abs/10.1080/13895260500128914.
  • S.G. Ercelebi and A. Bascetin, Optimization of shovel-truck system for surface mining, J. South Afr. Inst. Min. Metall. 109 (2009), pp. 433–439 ISSN 2225-6253.
  • C.H. Ta, A. Ingolfsson, and J. Doucette, A linear model for surface mining haul truck allocation incorporating shovel idle probabilities, Eur. J. Oper. Res. 231 (3) (2013), pp. 770–778. ISSN 0377-2217. doi:10.1016/j.ejor.2013.06.016
  • E. Topal and S. Ramazan, Mining truck scheduling with stochastic maintenance cost, J. Coal Sci. Eng. (China). 18 (3) (2012), pp. 313–319. ISSN 1866-6566. doi:10.1007/s12404-012-0316-4.
  • J. Benndorf, Application of efficient methods of conditional simulation for optimising coal blending strategies in large continuous open pit mining operations, Int. J. Coal Geol. 112 (2013), pp. 141–153. ISSN 0166-5162 Availabe at http://www.sciencedirect.com/science/article/pii/S0166516212002492.
  • M.E.V. Matamoros and R. Dimitrakopoulos, Stochastic short-term mine production schedule ac- counting for fleet allocation, operational considerations and blending restrictions, Eur. J. Oper. Res. 255 (2016 3), pp. 911–921. ISSN 0377-2217. Availabe at http://www.sciencedirect.com/science/article/pii/S0377221716303873.
  • N. Vagenas, Dispatch control of a fleet of remote-controlled/automatic load-haul-dump vehicles in underground mines, Int. J. Prod. Res. 29, 11 (1991), pp. 2347–2363. doi:10.1080/00207549108948087.
  • M. Gamache, R. Grimard, and P. Cohen, A shortest-path algorithm for solving the fleet management problem in underground mines, Eur. J. Oper. Res. 166 (2005 2), pp. 497–506. ISSN 0377-2217. Available at http://www.sciencedirect.com/science/article/pii/S037722170400222X
  • M. Beaulieu and M. Gamache, An enumeration algorithm for solving the fleet management problem in underground mines, Comput. Oper. Res. 33 (6) (2006), pp. 1606–1624. ISSN 0305-0548. doi:10.1016/j.cor.2004.11.016.
  • B.W. Patty, Handbook of Operations Research Applications at Railroads, Vol. 222, Springer, New York, NY, 2015.
  • R. Garcia-Flores, G. Singh, A. Ernst, and P. Welgama, Medium-term rail planning at Rio Tinto iron ore, Proceedings of the 19th International Congress on Modelling and Simulation (MODSIM 2011), Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Perth, Australia, 2011, pp. 311–317.
  • S.Q. Liu and E. Kozan, Scheduling trains as a blocking parallel-machine job shop scheduling problem, Comput. Oper. Res. 36 (10) (2009), pp. 2840–2852. ISSN 0305-0548. Available at http://www.sciencedirect.com/science/article/pii/S0305054808002712.
  • S.Q. Liu and E. Kozan, Optimizing a coal rail network under capacity constraints, Flexible Serv. Manufact. J. 23 (2) (2011), pp. 90–110. ISSN 1936-6590. doi:10.1007/s10696-010-9069-9.
  • V. Salim and X. Cai, A genetic algorithm for railway scheduling with environmental considerations, Environ. Modell. Soft. 12 (4) (1997), pp. 301–309. ISSN 1364-8152. Availabe at http://www.sciencedirect.com/science/article/pii/S1364815297000261.
  • G. Singh, A.T. Ernst, M. Baxter, and D. Sier, Rail schedule optimisation in the hunter valley coal chain, RAIRO-Oper. Res. 49, 2 (2015), pp. 413–434. doi:10.1051/ro/2014049
  • G. Singh, R. García-Flores, A. Ernst, P. Welgama, M. Zhang, and K. Munday, Medium-term rail scheduling for an iron ore mining company, Interfaces. 44, 2 (2014), pp. 222–240. doi:10.1287/inte.1120.0669
  • L.B. Campos, Modelo de otimização para o planejamento da rede de serviços no transporte ferroviário de cargas, PhD thesis, Universidade Federal do Esp{\’\i}rito Santo, 2009.
  • L.B. Campos, M.M. Da Costa Cruz, and F.M. Pompermayer, Modelo integrado de apoio ao planejamento da rede de serviços no transporte ferroviário de cargas: Aplicação para transporte de minério de ferro, TRANSPORTES. 18 (2) (2010). doi:10.14295/transportes.v18i2.425
  • C.H.F. de Faria and M.M. Da Costa Cruz, Simulation modelling of vitória-minas closed-loop rail network, Trans. Prob. 10 (SE) (2015), pp. 125–139. doi:10.21307/tp-2015-067.
  • R.P.L. Meireles, Modelagem e Simulação da Malha Ferroviária em Circuito Fechado da Estrada de Ferro de Vitória a Minas, PhD thesis, Universidade Federal do Esp{\’\i}rito Santo, 2010.
  • A.L.M. Barros, Modelo de Otimização para Distribuição Horária de Lotes de Vagões Ferroviários GDE para Carregamento de Minério de Ferro, PhD thesis, Universidade Federal do Esp{\’\i}rito Santo, 2010.
  • I.E. Içyüz, J.P.P. Richard, E. Eskigun, and D. Acharya, A two-model solution approach for the monthly coal train reservations planning problem, Transp. Sci. 50, 3 (2016), pp. 926–946. doi:10.1287/trsc.2015.0654
  • M. Masoud, E. Kozan, G. Kent, and S.Q. Liu, A new constraint programming approach for optimising a coal rail system, Optim. Lett. 11 (4) (2017), pp. 725–738. ISSN 1862-4480. doi:10.1007/s11590-016-1041-5
  • G. Reinhardt, M. Dada, and S. Chopra, Coal movement by railroad in the powder river basin, Energy Stud. Rev. 11 (1) (2002). doi:10.15173/esr.v11i1.440
  • M.A. Nobrega, Modelagem matematica de um sistema de produção e transporte de minerio de ferro, PhD thesis, UNIVERSIDADE ESTADUAL DE CAMPINAS, Campinas, SP, Brasil, 1997.
  • M. Ago, T. Nishi, and M. Konishi, Simultaneous optimization of storage allocation and routing problems for belt-conveyor transportation, J.Adv. Mech. Des. Syst. Manuf. 1 (2) (2007), pp. 250–261. doi:10.1299/jamdsm.1.250.
  • N. Boland, D. Gulczynski, and M. Savelsbergh, A stockyard planning problem, EURO J. Transp. Logist. 1 (3) (2012), pp. 197–236. ISSN 2192-4384. doi:10.1007/s13676-012-0011-z.
  • N. Boland, D. Gulezynski, M.P. Jackson, M. Savelsbergh, and M.K. Tam, Improved stockyard management strategies for coal export terminal at Newcastle, Proceedings of the 19th International Congress on Modelling and Simulation, Perth, W.A., 2011 December 12–16, pp. 718–724.
  • S. Hanoun, B. Khan, M. Johnstone, S. Nahavandi, and D. Creighton, An effective heuristic for stockyard planning and machinery scheduling at a coal handling facility, Industrial Informatics (INDIN), 2013 11th IEEE International Conference on, IEEE, Bochum, Germany, 2013, pp. 206–211.
  • G. Belov, N. Boland, M.W.P. Savelsbergh, and P.J. Stuckey, Local search for a cargo assembly planning problem, in Integration of AI and OR Techniques in Constraint Programming, H. Simonis, ed., Springer International Publishing, Cham, 2014, pp. 159–175. ISBN 978-3-319-07046-9
  • G. Belov, N. Boland, M.W.P. Savelsbergh, and P.J. Stuckey, Exploration of models for a cargo assembly planning problem, ArXiv e-prints, 2015.
  • M. Savelsbergh and O. Smith, Cargo assembly planning, EURO J. Transp. Logist. 4 (3) (2015), pp. 321–354. ISSN 2192-4384. doi:10.1007/s13676-014-0048-2
  • M. Binkowski and B.J. McCarragher, A Queueing model for the design and analysis of a mining stockyard, Discrete Event Dyn. Syst. 9 (1) (1999 1), pp. 75–98. ISSN 1573-7594. doi:10.1023/A:1008397332376.
  • V.T. Le, M. Johnstone, J. Zhang, B. Khan, D. Creighton, S. Hanoun, and S. Nahavandi, Complex simulation of stockyard mining operations, in Advances in Global Optimization, D. Gao, N. Ruan and W. Xing, eds., Springer International Publishing, Cham, 2015, pp. 529–537. ISBN 978-3-319-08377-3.
  • M.M. Fioroni, L.A.G. Franzese, C.E. Zanin, J. Furia, L. de Toledo Perfetti, D. Leonardo, and N.L. Da Silva, Simulation of continuous behavior using discrete tools: Ore conveyor transport, 2007 Winter Simulation Conference, Washington, DC, 2007, pp. 1655–1662.
  • B. Xiao-Ping, Z.A. Yu-Hong, and L.A. Ya-Nan, A novel approach to study real-time dynamic optimization analysis and simulation of complex mine logistics transportation hybrid system with belt and surge links, Discrete Dyn. In Nat. Soc. 2015 (2015), pp. 1–8. doi:10.1155/2015/601578.
  • T. van Vianen, J. Ottjes, and G. Lodewijks, Belt conveyor network design using simulation, J. Simul. 10, 3 (2016), pp. 157–165. doi:10.1057/jos.2014.38
  • S. Que, K. Awuah-Offei, and S. Frimpong, Optimising design parameters of continuous mining transport systems using discrete event simulation, Int. J. Min. Reclam. Environ. 30, 3 (2016), pp. 217–230. doi:10.1080/17480930.2015.1037056.
  • R.L. McNearny and Z. Nie, Simulation of a conveyor belt network at an underground coal mine, Min. Resour. Eng. 09 (03) (2000), pp. 343–355. doi:10.1142/S0950609800000299.
  • K. Fagerholt, Optimal fleet design in a ship routing problem, Int. Tran. Oper. Res. 6 (5) (1999), pp. 453–464. ISSN 0969-6016. Available at http://www.sciencedirect.com/science/article/pii/S0969601699000106.
  • M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen, Ship routing and scheduling in the new millennium, Eur. J. Oper. Res. 228 (3) (2013), pp. 467–483. ISSN 0377-2217. Available at http://www.sciencedirect.com/science/article/pii/S0377221712009125.
  • M. Christiansen, K. Fagerholt, and D. Ronen, Ship routing and scheduling: status and perspectives, Transp. Sci. 38 (1) (2004), pp. 1–18. Available at https://pubsonline.informs.org/doi/abs/10.1287/trsc.1030.0036.
  • D. Steenken, S. Voßand, and R. Stahlbock, Container terminal operation and operations research - a classification and literature review, OR Spectr. 26 (1) (2004), pp. 3–49. ISSN 1436-6304. doi:10.1007/s00291-003-0157-z.
  • R. Stahlbock and S. Voß, Operations research at container terminals: A literature update, OR Spectr. 30 (1) (2008 1), pp. 1–52. ISSN 1436-6304. doi:10.1007/s00291-007-0100-9.
  • L.H. Shih, Planning of fuel coal imports using a mixed integer programming method, Int. J. Prod. Econ. 51 (3) (1997), pp. 243–249. ISSN 0925-5273. Available at http://www.sciencedirect.com/science/article/pii/S0925527397000789.
  • Q. Zeng and Z. Yang, Model integrating fleet design and ship routing problems for coal shipping. In Y. Shi, G.D. van Albada, J. Dongarra and P.M.A. Sloot, eds., Computational Science – ICCS 2007: 7th International Conference, Beijing, China, May 27 – 30, 2007, Proceedings, Part III, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 1000–1003. ISBN 978-3-540-72588-6.
  • C.M. Liu, A blending and inter-modal transportation model for the coal distribution problem, Int. J. Oper. Res. 5 (2008), pp. 107–116.
  • M. Christiansen, K. Fagerholt, T. Flatberg, Ø. Haugen, O. Kloster, and E.H. Lund, Maritime inventory routing with multiple products: A case study from the cement industry, Eur. J. Oper. Res. 208 (1) (2011), pp. 86–94. ISSN 0377-2217. Available at http://www.sciencedirect.com/science/article/pii/S0377221710005606.
  • N.L. Boland and M.W.P. Savelsbergh, Optimizing the hunter valley coal chain, in Supply Chain Disruptions: Theory and Practice of Managing Risk, H. Gurnani, A. Mehrotra and S. Ray, eds., Springer London, London, 2012, pp. 275–302. ISBN 978-0-85729-778-5. doi:10.1007/978-0-85729-778-5_10.
  • A. Arigoni, A. Newman, C. Turner, and C. Kaptur, Optimizing global thermal coal shipments, Omega. 72 (SupplementC) (2017), pp. 118–127. ISSN 0305-0483. Available at http://www.sciencedirect.com/science/article/pii/S0305048316300792.
  • J. Dong, F. Gao, S. Dai, X. Guan, R. Ma, and F. Lai, Purchasing and transport scheduling based on scenario tree in coal maritime supply chain with stochastic demand, Proceeding of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 2014, pp. 3444–3449.
  • Z. Drezner and H.W. Hamacher (eds.), Facility Location: Applications and Theory, Springer, New York, 2004.
  • A. Klose and A. Drexl, Facility location models for distribution system design, Eur. J. Oper. Res. 162 (1) (2005 4), pp. 4–29. ISSN 0377-2217. Available at https://www.sciencedirect.com/science/article/abs/pii/S0377221703008191.
  • M.T. Melo, S. Nickel, and F. Saldanha-Da Gama, Facility location and supply chain management - A review, Eur. J. Oper. Res. 196 (2) (2009), pp. 401–412. ISSN 0377-2217. doi:10.1016/j.ejor.2008.05.007.
  • C.S. ReVelle, H.A. Eiselt, and M.S. Daskin, A bibliography for some fundamental problem cat- egories in discrete location science, Eur. J. Oper. Res. 184 (3) (2008 2), pp. 817–848. ISSN 0377-2217. Available at https://www.sciencedirect.com/science/article/abs/pii/S037722170700080X.
  • M. Kumral, Optimal location of a mine facility by genetic algorithms, Min. Technol. 113, 2 (2004), pp. 83–88. doi:10.1179/037178404225004940.
  • R.J. Zhou and L.J. Li, Joint capacity planning and distribution network optimization of coal supply chains under uncertainty, AIChE J. 64 (4) (2018), pp. 1246–1261. Availabe at https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.16012
  • M. Paricheh and M. Osanloo, A simulation-based risk management approach to locating facilities in open-pit mines under price and grade uncertainties, Simul. Modell. Pract. Theory. 89 (2018), pp. 119–134. ISSN 1569-190X. doi:10.1016/j.simpat.2018.09.015.
  • P. Bodon, C. Fricke, T. Sandeman, and C. Stanford, Modeling the mining supply chain from mine to port: A combined optimization and simulation approach, J. Min. Sci. 47 (2) (2011), pp. 202–211. doi:10.1134/S1062739147020079.
  • R.C. Goodfellow and R. Dimitrakopoulos, Global optimization of open pit mining complexes with uncertainty, Appl. Soft. Comput. 40 (2016), pp. 292–304. ISSN 1568-4946 Available at https://www.sciencedirect.com/science/article/pii/S1568494615007565.
  • A. Kumar and S. Chatterjee, Open-pit coal mine production sequencing incorporating grade blending and stockpiling options: An application from an Indian mine, Eng. Optim. 49, 5 (2017), pp. 762–776. doi:10.1080/0305215X.2016.1210312.
  • J.M. Henderson, A short-run model for the coal industry, Rev. Econ. Stat. 37 (4) (1955), pp. 336–346. ISSN 00346535, 15309142. Available at http://www.jstor.org/stable/1925847.
  • J.M. Henderson, The Efficiency of the Coal Industry-An Application of Linear Programming, PhD thesis, Harvard University Press, Cambridge, Mass., 1958.
  • G.H. Tzeng, D. Teodorović, and M.J. Hwang, Fuzzy bicriteria multi-index transportation prob- lems for coal allocation planning of Taipower, Eur. J. Oper. Res. 95 (1) (1996), pp. 62–72. ISSN 0377-2217. Available at http://www.sciencedirect.com/science/article/pii/0377221795002472.
  • P.C. Pendharkar, A fuzzy linear programming model for production planning in coal mines, Comput. Oper. Res. 24 (12) (1997), pp. 1141–1149. ISSN 0305-0548. doi:10.1016/S0305-0548(97)00024-5.
  • L.G. Márquez, Optimización de una red de transporte combinado para la exportación del carbón del interior de Colombia, Rev.EIA. (2011), pp. 103–113. ISSN 1794-1237. Available at http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-12372011000200008&nrm=iso
  • A. Thomas, G. Singh, M. Krishnamoorthy, and J. Venkateswaran, Distributed optimisation method for multi-resource constrained scheduling in coal supply chains, Int. J. Prod. Res. 51, 9 (2013), pp. 2740–2759. doi:10.1080/00207543.2012.737955.
  • A. Abdekhodaee, S. Dunstall, A. Ernst, and L. Lam, Integration of stockyard and rail network: A scheduling case study, Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference, Gold Coast, Australia, 2004.
  • A. Thomas, J. Venkateswaran, G. Singh, and M. Krishnamoorthy, A resource constrained scheduling problem with multiple independent producers and a single linking constraint: A coal supply chain example, Eur. J. Oper. Res. 236 (3) (2014), pp. 946–956. ISSN 0377-2217. Available at http://www.sciencedirect.com/science/article/pii/S0377221713008084.
  • A. Thomas, M. Krishnamoorthy, J. Venkateswaran, and G. Singh, Decentralised decision-making in a multi-party supply chain, Int. J. Prod. Res. 54, 2 (2016), pp. 405–425. doi:10.1080/00207543.2015.1096977
  • L. Canales-Bustos, E. Santibañez-González, and A. Candia-Véjar, A multi-objective optimization model for the design of an effective decarbonized supply chain in mining, Int. J. Prod. Econ. 193 (2017), pp. 449–464. ISSN 0925-5273. Available at http://www.sciencedirect.com/science/article/pii/S0925527317302542.
  • Q. Cheng, S. Ning, X. Xia, and F. Yang, Modelling of coal trade process for the logistics enterprise and its optimisation with stochastic predictive control, Int. J. Prod. Res. 54, 8 (2016), pp. 2241–2259. doi:10.1080/00207543.2015.1062568.
  • J. Balzary and A. Mohais, Consideration for multi-objective metaheuristic optimisation of large iron ore and coal supply chains, from resource to market, in Advances in Applied Strategic Mine Planning, R. Dimitrakopoulos, ed., Springer International Publishing, Cham, 2018, pp. 297–316. ISBN 978-3-319-69320-0. doi:10.1007/978-3-319-69320-0_20.
  • F. Liu, T. Lv, M. Sajid, and X. Li, Optimization for China’s coal flow based on matching supply and demand sides, Resour. Conserv. Recycl. 129 (2018), pp. 345–354. ISSN 0921-3449. Available at http://www.sciencedirect.com/science/article/pii/S0921344916302051.
  • A. Ravindran and D.L. Hanline, Optimal location of coal blending plants by mixed-integer programming, AIIE Trans. 12, 2 (1980), pp. 179–185. doi:10.1080/05695558008974505.
  • R. Barbaro and R. Ramani, Generalized multiperiod MIP model for production scheduling and pro- cessing facilities selection and location, Min. Eng. 38 (1986), pp. 107–114.
  • H.D. Sherali and R. Puri, Models for a coal blending and distribution problem, Omega. 21 (2) (1993), pp. 235–243. ISSN 0305-0483. Available at http://www.sciencedirect.com/science/article/pii/030504839390056Q.
  • E.K.C. Chanda and K. Dagdelen, Optimal blending of mine production using goal programming and interactive graphics systems, Int. J.Surf. Min. Reclam. Environ. 9, 4 (1995), pp. 203–208. doi:10.1080/09208119508964748
  • J. Lyu, A. Gunasekaran, C.Y. Chen, and C. Kao, A goal programming model for the coal blending problem, Comput. Ind. Eng. 28 (4) (1995), pp. 861–868. ISSN 0360-8352. Available at http://www.sciencedirect.com/science/article/pii/036083529500007N.
  • J.W. Lai and C.Y. Chen, A cost minimization model for coal import strategy, Energy Policy. 24 (12) (1996), pp. 1111–1117. ISSN 0301-4215. Available at http://www.sciencedirect.com/science/article/pii/S0301421596000912.
  • C.M. Liu and H.D. Sherali, A coal shipping and blending problem for an electric utility company, Omega. 28 (4) (2000), pp. 433–444. ISSN 0305-0483. Available at http://www.sciencedirect.com/science/article/pii/S0305048399000675.
  • H.J. Peng, M.H. Zhou, M.Z. Liu, Y. Zhang, and Y.B. Huang, A dynamic optimization model of an integrated coal supply chain system and its application, Min. Sci.Technol. (China). 19 (6) (2009), pp. 842–846. ISSN 1674-5264. Available at http://www.sciencedirect.com/science/article/pii/S1674526409601538.
  • S. Schellenberg, X. Li, and Z. Michalewicz. Benchmarks for the coal processing and blending problem, Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO ’16, Denver, CO, ACM, New York, NY, USA, 2016, pp. 1005–1012. ISBN 978-1-4503-4206-3. doi:10.1145/2908812.2908945.
  • P.C. Pendharkar and J.A. Rodger, Nonlinear programming and genetic search application for production scheduling in coal mines, Ann. Oper. Res. 95 (1) (2000), pp. 251–267. ISSN 1572-9338. doi:10.1023/A:1018958209290
  • Y.F. Liao, C.H. Wu, and X.Q. Ma, New hybrid optimization model for power coal blending, Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on Vol 7, IEEE, Guangzhou, China, 2005.
  • G. Xi-Jin, C. Ming, and W. Jia-Wei, Coal blending optimization of coal preparation production process based on improved GA, Procedia Earth Planet. Sci. 1 (1) (2009), pp. 654–660. ISSN 1878-5220. Available at http://www.sciencedirect.com/science/article/pii/S1878522009001040.
  • W. Candler, Coal blending – With acceptance sampling, Comput. Oper. Res. 18 (7) (1991), pp. 591–596. ISSN 0305-0548. Available at http://www.sciencedirect.com/science/article/pii/030505489190066Z.
  • J.S. Shih and H.C. Frey, Coal blending optimization under uncertainty, Eur. J. Oper. Res. 83 (3) (1995), pp. 452–465. ISSN 0377-2217. Available at http://www.sciencedirect.com/science/article/pii/0377221794002436.
  • M. Kumral, Application of chance-constrained programming based on multi-objective simulated an- nealing to solve a mineral blending problem, Eng. Optim. 35, 6 (2003), pp. 661–673. doi:10.1080/03052150310001614837
  • D.G. Conradie, L.E. Morison, and J.W. Joubert, Scheduling at coal handling facilities using Simulated annealing, Math. Methods Oper. Res. 68 (2) (2008), pp. 277–293. ISSN 1432-5217. doi:10.1007/s00186-008-0221-1
  • Ü.S. Sakallı and Ö.F. Baykoç, An optimization approach for brass casting blending problem un- der aletory and epistemic uncertainties, Int. J. Prod. Econ. 133 (2) (2011), pp. 708–718. ISSN 0925-5273. Available at http://www.sciencedirect.com/science/article/pii/S0925527311002398.
  • Ü.S. Sakallı and Ö.F. Baykoç, Strong guidance on mitigating the effects of uncertainties in the brass casting blending problem: A hybrid optimization approach, J.Oper.Res. Soc. 64 (4) (2013), pp. 562–576. ISSN 1476-9360. doi:10.1057/jors.2012.50.
  • Ü.S. Sakallı, Ö.F. Baykoç, and B. Birgören, Stochastic optimization for blending problem in brass casting industry, Ann. Oper. Res. 186 (1) (2011 6), pp. 141–157. ISSN 1572-9338. doi:10.1007/s10479-011-0851-1.
  • A. Arigoni, Optimization techniques in coal markets: a global cost minimization and a multi-stage procurement strategy, PhD thesis, Colorado School of Mines. Arthur Lakes Library, Golden, Colorado, USA, 2016.
  • J. Zhang and R. Dimitrakopoulos, Optimising a mineral supply chain under uncertainty with long- term sales contracts, in Advances in Applied Strategic Mine Planning, R. Dimitrakopoulos, ed., Springer International Publishing, Cham, 2018, pp. 787–800. ISBN 978-3-319-69320-0. doi:10.1007/978-3-319-69320-0_45.
  • P. Bodon, C. Fricke, T. Sandeman, and C. Stanford, Combining optimisation and simulation to model a supply chain from pit to port, in Advances in Applied Strategic Mine Planning, R. Dimitrakopoulos, ed., Springer International Publishing, Cham, 2018, pp. 251–267. ISBN 978-3-319-69320-0. doi:10.1007/978-3-319-69320-0_17.
  • M. Chakraborty and M.K. Chandra, Multicriteria decision making for optimal blending for beneficiation of coal: A fuzzy programming approach, Omega. 33 (5) (2005), pp. 413–418. ISSN 0305-0483. Available at http://www.sciencedirect.com/science/article/pii/S0305048304001008.
  • W. Li, G.H. Huang, C. Dong, and Y. Liu, An inexact fuzzy programming approach for power coal blending, J. Environ. Inf. 21 (2) (2013). ISSN 1684-8799. doi:10.3808/jei.201300238.
  • C. Dai, X.H. Cai, Y.P. Cai, and G.H. Huang, A simulation-based fuzzy possibilistic programming model for coal blending management with consideration of human health risk under uncertainty, Appl. Energy. 133 (2014), pp. 1–13. ISSN 0306-2619. Available at http://www.sciencedirect.com/science/article/pii/S0306261914007831.
  • Y. Liu, G.H. Huang, Y.P. Cai, G.H. Cheng, Y.T. Niu, and K. An, Development of an inexact optimization model for coupled coal and power management in North China, Energy Policy. 37 (11) (2009), pp. 4345–4363. ISSN 0301-4215. Available at http://www.sciencedirect.com/science/article/pii/S0301421509003942.
  • H. Luss, Operations research and capacity expansion problems: A survey, Oper. Res. 30, 5 (1982), pp. 907–947. doi:10.1287/opre.30.5.907.
  • G. Singh, D. Sier, A.T. Ernst, O. Gavriliouk, R. Oyston, T. Giles, and P. Welgama, A mixed integer programming model for long term capacity expansion planning: A case study from the hunter valley coal chain, Eur. J. Oper. Res. 220 (2012 1), pp. 210–224. ISSN 0377-2217. Available at http://www.sciencedirect.com/science/article/pii/S0377221712000318.
  • P. Benalcazar, J. Kamiński, and P. Saługa, The storage location problem in a coal supply chain: Background and methodological approach, Gospodarka Surowcami Mineralnymi. 33 (1) (2017), pp. 5–14. ISSN 2299-2324. doi:10.1515/gospo-2017-0009
  • M. Promban and O. Kittithreerapronchai, Robust optimization for coal transportation planning, J. Eng. Appl. Sci. 12 (1) (2017), pp. 5609–5616. ISSN 1816-949X
  • B.S. Pimentel, G.R. Mateus, and F.A. Almeida, Stochastic capacity planning and dynamic network design, Int. J. Prod. Econ. 145 (1) (2013), pp. 139–149. ISSN 0925-5273. Available at http://www.sciencedirect.com/science/article/pii/S0925527313000376.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.