405
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A review of acid rock drainage, seasonal flux of discharge and metal concentrations, and passive treatment system limitations

, ORCID Icon & ORCID Icon
Pages 34-47 | Received 01 Apr 2019, Accepted 07 Feb 2020, Published online: 16 Feb 2020

References

  • A. Akcil and S. Koldas, Acid Mine Drainage (AMD): Causes, treatment and case studies, J Clean. Prod. 14 (2006), pp. 1139–1145. doi:10.1016/j.jclepro.2004.09.006.
  • R.S. Hedin, R.W. Narin, and R.L. Kleinmann, Passive Treatment of Coal Mine Drainage, US Department of the Interior Bureau of Mines, Pittsburgh, PA, 1994.
  • M.C. Moncur, C.J. Ptacek, M. Hayashi, D.W. Blowes, and S.J. Birks, Seasonal cycling and mass-loading of dissolved metals and sulfate discharging from an abandoned mine site in northern Canada, Appl. Geochem. 41 (2014), pp. 176–188. doi:10.1016/j.apgeochem.2013.12.007.
  • D.K. Nordstrom, Acid rock drainage and climate change, J. Geochem. Explor. 100 (2009), pp. 97–104. doi:10.1016/j.gexplo.2008.08.002.
  • T.J. Hengen, M.K. Squillace, A.D. O’Sullivan, and J.J. Stone, Life cycle assessment analysis of active and passive acid mine drainage treatment technologies, Resour. Conserv. Recycl. 86 (2014), pp. 160–167. doi:10.1016/j.resconrec.2014.01.003.
  • D.B. Johnson and K.B. Hallberg, Acid mine drainage remediation options: A review, Sci. Total Environ. 338 (2005), pp. 3–14. doi:10.1016/j.scitotenv.2004.09.002.
  • N.O. Egiebor and B. Oni, Acid rock drainage formation and treatment: A review, Asia-Pac. J. Chem. Eng. 2 (2007), pp. 47–62. doi:10.1002/apj.57.
  • K.K. Kefeni, T.A.M. Msagati, and B.B. Mamba, Acid mine drainage: Prevention, treatment options, and resource recovery: A review, J. Clean. Prod. 151 (2017), pp. 475–493. doi:10.1016/j.jclepro.2017.03.082.
  • J. Skousen, C.E. Zipper, A. Rose, P.F. Ziemkiewicz, R. Nairn, L.M. McDonald, Review of passive systems for acid mine drainage treatment, Mine Water Environ. 36 (2017), pp. 133–153. doi:10.1007/s10230-016-0417-1.
  • R.D. Ludwig, R.G. McGregor, D.W. Blowes, S.G. Benner, and K. Mountjoy, A permeable reactive barrier for treatment of heavy metals, Ground Water 40 (2002), pp. 59–66. doi:10.1111/j.1745-6584.2002.tb02491.x.
  • P.B. McMahon, K.F. Dennehy, and M.W. Sandstrom, Hydraulic and geochemical performance of a permeable reactive barrier containing zero-valent iron, Denver Federal Center, Ground Water 37 (1999), pp. 396–404. doi:10.1111/j.1745-6584.1999.tb01117.x.
  • R.W. Puls, R.M. Powell, C.J. Paul, and D. Blowes, Groundwater remediation of chromium using zero-valent iron in a permeable reactive barrier, in Innovative Subsurface Remediation, American Chemical Society, 1999, pp. 182–194. doi:10.1021/bk-1999-0725.ch013.
  • L. Li, C.H. Benson, and E.M. Lawson, Impact of mineral fouling on hydraulic behavior of permeable reactive barriers, Groundwater 43 (2005), pp. 582–596. doi:10.1111/j.1745-6584.2005.0042.x.
  • E. Gozzard, W.M. Mayes, H.A.B. Potter, and A.P. Jarvis, Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK, Environ. Pollut. 159 (2011), pp. 3113–3122. doi:10.1002/ep.670040311.
  • D.L. Harris, B.G. Lottermoser, and J. Duchesne, Ephemeral acid mine drainage at the Montalbion silver mine, north Queensland, Aust J. Earth Sci. 50 (2003), pp. 797–809. doi:10.1111/j.1440-0952.2003.01029.x.
  • E.E. August, D.M. McKnight, D.C. Hrncir, and K.S. Garhart, Seasonal variability of metals transport through a wetland impacted by mine drainage in the Rocky Mountains, Environ. Sci. Technol. 36 (2002), pp. pp. 3779–3786. doi:10.1021/es015629w.
  • P. Brooks, D. McKnight, and K. Bencala, Annual maxima in Zn concentrations during spring snowmelt in streams impacted by mine drainage, Environ. Geol. 40 (2001), pp. 1447–1454. doi:10.1007/s002540100338.
  • T.W. Butler, Isotope geochemistry of drainage from an acid mine impaired watershed, Oakland, California, Appl. Geochem. 22 (2007), pp. 1416–1426. doi:10.1016/j.apgeochem.2007.01.009.
  • K.U. Mayer, S.G. Benner, and D.W. Blowes, Process-based reactive transport modeling of a permeable reactive barrier for the treatment of mine drainage, J. Contam. Hydrol. 85 (2006), pp. 195–211. doi:10.1016/j.jconhyd.2006.02.006.
  • C. Costello, Acid mine drainage: Innovative treatment technologies, US EPA Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, D.C., 2003.
  • D.A. Kepler and E.C. McCleary, Successive alkalinity-producing systems (SAPS) for the treatment of acidic mine drainage, U.S. Bureau of Mines Special Publication SP 06A. (1994), pp. 195–204. doi:10.21000/JASMR94010195.
  • A. RoyChowdhury, D. Sarkar, and R. Datta, Remediation of acid mine drainage-impacted water, Curr. Pollut. Rep. 1 (2015), pp. 131–141. doi:10.1007/s40726-015-0011-3.
  • M.S. Ali, Remediation of acid mine waters, in 11th International Mine Water Association Congress- Mine Water- Managing the Challenges, R.T. Rude and A. Freund, eds., Wolkersdorfer, Aachen, 2011, pp. 253–257. ISBN 978-1-897009-47-5.
  • M.A. Caraballo, E. Santofimia, and A.P. Jarvis, Metal retention, mineralogy, and design considerations of a mature permeable reactive barrier (PRB) for acidic mine water drainage in Northumberland, U.K., Am. Mineral. 95 (2010), pp. 1642–1649. doi:10.2138/am.2010.3505.
  • A. Johnston, R.L. Runkel, A. Navarre-Sitchler, and K. Singha, Exploration of diffuse and discrete sources of acid mine drainage to a headwater mountain stream in Colorado, USA, Mine Water Environ. 36 (2017), pp. 463–478. doi:10.1007/s10230-017-0452-6.
  • A.N. Shabalala, S.O. Ekolu, and S. Diop, Permeable reactive barriers for acid mine drainage treatment: A review, Constr. Mater. Struct. (2014), pp. 1416–1426. doi:10.3233/978-1-61499-466-4-1416.
  • R.M. Powell, R.W. Puls, D.W. Blowes, J.L. Vogan, R.W. Gillham, P.D. Powell, T. Sivavec, and R. Landis, Permeable reactive barrier technologies for contaminant remediation. EPA/600/R-98/125 (NTIS 99-105702), Washington, D.C., 1998.
  • S.G. Benner, D.W. Blowes, W.D. Gould, R.B. Herbert, and C.J. Ptacek, Geochemistry of a permeable reactive barrier for metals and acid mine drainage, Environ. Sci. Technol. 33 (1999), pp. 2793–2799. doi:10.1021/es981040u.
  • L. Li and C.H. Benson, Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers, J. Hazard. Mater. 181 (2010), pp. 170–180. doi:10.1016/j.jhazmat.2010.04.113.
  • Y. Liu, H. Mou, L. Chen, Z.A. Mirza, and L. Liu, Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness, J. Hazard. Mater. 298 (2015), pp. 83–90. doi:10.1016/j.jhazmat.2015.05.007.
  • K.R. Waybrant, D.W. Blowes, and C.J. Ptacek, Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage, Environ. Sci. Technol. 32 (1998), pp. 1972–1979. doi:10.1021/es9703335.
  • O. Gibert, J.L. Cortina, J. de Pablo, and C. Ayora, Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage, Environ. Sci. Pollut. Res. 20 (2013), pp. 7854–7862. doi:10.1007/s11356-013-1507-2.
  • J.J. Metesh, T. Jarrell, and S. Oravetz, Treating acid mine drainage from abandoned mines in remote areas, Tech. Rep. 9871-2821-MTDC, USDA Forest Service, Missoula Technology Development Center, Missoula, MT, 1998.
  • A.E. Fryar and F.W. Schwartz, Hydraulic-conductivity reduction, reaction-front propagation, and preferential flow within a model reactive barrier, J. Contam. Hydrol. 32 (1998), pp. 333–351. doi:10.1016/S0169-7722(98)00057-6.
  • D.C. McMurtry and R.O. Elton, New approach to in-situ treatment of contaminated groundwaters, Environ. Prog. 4 (1985), pp. 168–170. doi:10.1002/ep.670040311.
  • N. Moraci and P.S. Calabrò, Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers, J. Environ. Manage. 91 (2010), pp. 2336–2341. doi:10.1016/j.jenvman.2010.06.019.
  • S.J. Morrison and R.R. Spangler, Chemical barriers for controlling groundwater contamination, Environ. Prog. 12 (1993), pp. 175–181. doi:10.1002/ep.670120305.
  • C. Fan and Y. Zhang, Adsorption isotherms, kinetics and thermodynamics of nitrate and phosphate in binary systems on a novel adsorbent derived from corn stalks, J. Geochem. Explor. 188 (2018), pp. 95–100. doi:10.1016/j.gexplo.2018.01.020.
  • M. Holub, M. Balintova, P. Pavlikova, and L. Palascakova, Study of sorption properties of zeolite in acidic conditions in dependence on particle size, Ital. Assoc. Chem. Eng. Trans. 32 (2013), pp. 559–564. doi:10.3303/CET1332094.
  • S. Jain, B.P. Baruah, and P. Khare, Kinetic leaching of high sulphur mine rejects amended with biochar: Buffering implication, Ecol. Eng. 71 (2014), pp. 703–709. doi:10.1016/j.ecoleng.2014.08.003.
  • J. Lehmann, M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, and D. Crowley, Biochar effects on soil biota – A review, Soil Biol. Biochem. 43 (2011), pp. 1812–1836. doi:10.1016/j.soilbio.2011.04.022.
  • T. Motsi, N.A. Rowson, and M.J.H. Simmons, Adsorption of heavy metals from acid mine drainage by natural zeolite, Int. J. Miner. Process. 92 (2009), pp. 42–48. doi:10.1016/j.minpro.2009.02.005.
  • X. Zhang, H. Wang, L. He, K. Lu, A. Sarmah, J. Li, et al., Using biochar for remediation of soils contaminated with heavy metals and organic pollutants, Environ. Sci. Pollut. Res. 20 (2013), pp. 8472–8483. doi:10.1007/s11356-013-1659-0.
  • F. Obiri-Nyarko, S.J. Grajales-Mesa, and G. Malina, An overview of permeable reactive barriers for in situ sustainable groundwater remediation, Chemosphere 111 (2014), pp. 243–259. doi:10.1016/j.chemosphere.2014.03.112.
  • R. Green, T.D. Waite, M.D. Melville, and B.C.T. Macdonald, Effectiveness of an open limestone channel in treating acid sulfate soil drainage, Water. Air. Soil Pollut. 191 (2008), pp. 293–304. doi:10.1007/s11270-008-9625-z.
  • J. Mertens, P. Vervaeke, E. Meers, and F.M.G. Tack, Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment, Environ. Sci. Technol. 40 (2006), pp. 1962–1968. doi:10.1021/es051225i.
  • C.A. Cravotta, Size and performance of anoxic limestone drains to neutralize acidic mine drainage, J. Environ. Qual. 32 (2003), pp. 1277–1289. doi:10.2134/jeq2003.1277.
  • A. Alcolea, M. Vázquez, A. Caparrós, I. Ibarra, C. García, R. Linares, and R. Rodríguez, Heavy metal removal of intermittent acid mine drainage with an open limestone channel, Miner. Eng. 26 (2012), pp. 86–98. doi:10.1016/j.mineng.2011.11.006.
  • O. Ouakibi, R. Hakkou, and M. Benzaazoua, Phosphate carbonated wastes used as drains for acidic mine drainage passive treatment, Procedia Eng. 83 (2014), pp. 407–414. doi:10.1016/j.proeng.2014.09.049.
  • P.F. Ziemkiewicz, J.G. Skousen, D.L. Brant, P.L. Sterner, and R.J. Lovett, Acid mine drainage treatment with armored limestone in open limestone channels, J. Environ. Qual. 26 (1997), pp. 1017–1024. doi:10.2134/jeq1997.00472425002600040013x.
  • B. Gazea, K. Adam, and A. Kontopoulos, A review of passive systems for the treatment of acid mine drainage, Miner. Eng. 9 (1996), pp. 23–42. doi:10.1016/0892-6875(95)00129-8.
  • E.I. Robbins, C.A. Cravotta, C.E. Savela, and G.L. Nord, Hydrobiogeochemical interactions in `anoxic’ limestone drains for neutralization of acidic mine drainage, Fuel 78 (1999), pp. 259–270. doi:10.1016/S0016-2361(98)00147-1.
  • F.M. Kusin, A. Aris, A. Shayeeda, and A. Misbah, A comparative study of anoxic limestone drain and open limestone channel for acidic raw water treatment, Int. J. Eng. Technol. 13(6) (2013), pp. 87–92. 133906-8686-IJET-IJENS.
  • G.R. Watzlaf, K.T. Schroeder, and C.L. Kairies, Long-term performance of anoxic limestone drains, Mine Water Environ. 19 (2000), pp. 98–110. doi:10.1007/BF02687258.
  • C.E. Zipper and J.G. Skousen, Influent water quality affects performance of passive treatment systems for acid mine drainage, Mine Water Environ. 29 (2010), pp. 135–143. doi:10.1007/s10230-010-0101-9.
  • E.R. Goetz and R.G. Riefler, Performance of steel slag leach beds in acid mine drainage treatment, Chem. Eng. J. 240 (2014), pp. 579–588. doi:10.1016/j.cej.2013.10.080.
  • I.Z. Yildirim and M. Prezzi, Chemical, mineralogical, and morphological properties of steel slag, Adv. Civ. Eng. (2011), pp. 1–13. doi:10.1155/2011/463638.
  • D.S. Kumar, M.R.B.S. Subramanya, and S.M.R. Prasad, Slags aggregates for roads and civil constructions, National Seminar on New Developments in Alternative Use of Materials, AMCON, Nagpur, India, 2015.
  • S.D. Cunningham, W.R. Berti, and J.W. Huang, Phytoremediation of contaminated soils, Trends Biotechnol. 13 (1995), pp. 393–397. doi:10.1016/S0167-7799(00)88987-8.
  • H. Deng, Z.H. Ye, and M.H. Wong, Lead and zinc accumulation and tolerance in populations of six wetland plants, Environ. Pollut. 141 (2006), pp. 69–80. doi:10.1016/j.envpol.2005.08.015.
  • A.D. Karathanasis and C.M. Johnson, Metal removal potential by three aquatic plants in an acid mine drainage wetland, Mine Water Environ. 22 (2003), pp. 22–30. doi:10.1007/s102300300004.
  • M. Roy, R. Roychowdhury, P. Mukherjee, A. Roy, B. Nayak, and S. Roy, Phytoreclamation of abandoned acid mine drainage site after treatment with fly ash, in Coal Fly Ash Beneficiation - Treatment of Acid Mine Drainage with Coal Fly Ash, R. Roychowdhury, ed., IntechOpen, Rijeka, 2018, pp. 111–118. doi:10.5772/intechopen.69527.
  • C. Garbisu and I. Alkorta, Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment, Bioresour. Technol. 77 (2001), pp. 229–236. doi:10.1016/S0960-8524(00)00108-5.
  • M. Del Rı́o, R. Font, C. Almela, D. Vélez, R. Montoro, and A. De Haro Bailón, Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcóllar mine, J. Biotechnol. 98 (2002), pp. 125–137. doi:10.1016/S0168-1656(02)00091-3.
  • W. Gwenzi, C.C. Mushaike, N. Chaukura, and T. Bunhu, Removal of trace metals from acid mine drainage using a sequential combination of coal ash-based adsorbents and phytoremediation by bunchgrass (Vetiver [Vetiveria zizanioides L]), Mine Water Environ. 36 (2017), pp. 520–531. doi:10.1007/s10230-017-0439-3.
  • M.M. Lasat, Phytoextraction of metals from contaminated soil: A review of plant/soil/metal interaction and assessment of pertinent agronomic issues, J. Hazard. Subst. Res. 2 (1999), pp. 109–120. doi:10.4148/1090-7025.1015.
  • M.O. Mendez and R.M. Maier, Phytoremediation of mine tailings in temperate and arid environments, Rev. Environ. Sci. Biotechnol. 7 (2008), pp. 47–59. doi:10.1007/s11157-007-9125-4.
  • B.Pivetz, Phytoremediation of contaminated soil and ground water at hazardous waste sites, in groundwater, Issue, Tech. Rep. EPA/540/S-01/500, United States Environmental Protection Agency, 2001. Available at https://www.epa.gov/sites/production/files/201506/documents/epa_540_s01_500.pdf.
  • J.S. Weis and P. Weis, Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration, Environ. Int. 30 (2004), pp. 685–700. doi:10.1016/j.envint.2003.11.002.
  • G.J. Zagury, C. Neculita, and B. Bussière, Passive treatment of acid mine drainage in bioreactors: Critical review and research needs, J. Environ. Qual. 36 (2007), pp. 1–16. doi:10.2134/jeq2006.0066.
  • O. Gibert, J. de Pablo, J.L. Cortina, and C. Ayora, Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage, Water Res. 39 (2005), pp. 2827–2838. doi:10.1016/j.watres.2005.04.056.
  • A. Janin and J. Harrington, Passive treatment of mine drainage waters: The use of biochars and wood products to enhance metal removal efficiency, Proceedings 2013 Northern Latitudes Mining Reclamation Workshop and 38th Annual Meeting of the Canadian Land Reclamation Association Overcoming Northern Challenge, Whitehorse, Yukon, September 9–12, 2013, pp. 90–99.
  • T.D. Brock and M.T. Madigan, Biology of Microorganisms, 6th ed., Prentice Hall, Englewood Cliffs, New Jersey, 1995.
  • E.C.M. Kwong, Abiotic and biotic pyrrhotite dissolution, MASc Thesis, University of Waterloo, 1995.
  • B. Lottermoser, Mine Wates: Characterization, Treatment and Environmental Impacts, 3rd ed., Springer Science & Business Media, London, 2010.
  • D. Wagner, Microbial communities and processes in arctic permafrost environments, in Microbiology of Extreme Soils (Soil Biology), P. Dion and C. S. Nautiyal, eds., Vol. 13, Springer, Berlin/Heidelberg, 2008, pp. 133–154.
  • Y. Yang, M. Wan, W. Shi, H. Peng, G. Qiu, J. Zhou, et al., Bacterial diversity and community structure in acid mine drainage from Dabaoshan Mine, China, Aquat. Microbiol. Ecol. 47 (2007), pp. 141–151. doi:10.3354/ame047141.
  • C.S. Kirby and C.A. Cravotta, Net alkalinity and net acidity 2: Practical considerations, Appl. Geochem. 20 (2005), pp. 1941–1964. doi:10.1016/j.apgeochem.2005.07.003.
  • N.A. Kruse, A.L. Mackey, J.R. Bowman, K. Brewster, and R.G. Riefler, Alkalinity production as an indicator of failure in steel slag leach beds treating acid mine drainage, Environ. Earth Sci. 67 (2012), pp. 1389–1395. doi:10.1007/s12665-012-1583-5.
  • S. Santomartino and J.A. Webb, Estimating the longevity of limestone drains in treating acid mine drainage containing high concentrations of iron, Appl. Geochem. 22 (2007), pp. 2344–2361. doi:10.1016/j.apgeochem.2007.04.020.
  • T.R. Lee and R.T. Wilkin, Iron hydroxy carbonate formation in zerovalent iron permeable reactive barriers: Characterization and evaluation of phase stability, J. Contam. Hydrol. 116 (2010), pp. 47–57. doi:10.1016/j.jconhyd.2010.05.009.
  • B.J. Baker and J.F. Banfield, Microbial communities in acid mine drainage, FEMS Microbiol. Ecol. 44 (2003), pp. pp. 139–152. doi:10.1016/S0168-6496(03)00028-X.
  • J. Skousen and P. Ziemkiewicz, Performance of 116 passive treatment systems for acid mine drainage, National Meeting of the American Society of Mining and Reclamation, Breckenridge, CO, 2005.
  • M. Christ, Operation and maintenance of passive acid mine drainage treatment systems: A framework for watershed groups, Tech. Rep.Division of Water and Waste Management, Nonpoint Source Program, West Virginia Department of Environmental Protection, Charleston, West Viriginia, 2014.
  • J. Bolzicco, C. Ayora, T. Rötting, and J. Carrera, Performance of the Aznalcóllar permeable reactive barrier, Mine Water Environ., at 8th International Mine Water Conference, Johannesburg, 2003, pp. 287–299.
  • C. Woulds and B.T. Ngwenya, Geochemical processes governing the performance of a constructed wetland treating acid mine drainage, Central Scotland, Appl. Geochem. 19 (2004), pp. 1773–1783. doi:10.1016/j.apgeochem.2004.04.002.
  • C.D. Barton and A.D. Karathanasis, Renovation of a failed constructed wetland treating acid mine drainage, Environ. Geol. 39 (1999), pp. 39–50. doi:10.1007/s002540050435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.