292
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Selective removal of selenium by phytoremediation from post/mining coal wastes: practicality and implications

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 69-77 | Received 04 Sep 2019, Accepted 22 Jul 2020, Published online: 10 Aug 2020

References

  • M.S. Čuvardić, Selenium in soils, Zbornik Matice Srpske Za Prirodne Nauke 104 (104) (2003), pp. 23–37. doi:10.2298/ZMSPN0304023C.
  • V. Arora, U. Jha, P. Bandhopadhyay, and S. Kumar, An investigation of the relationship between raw coal characteristics and effluent quality of Kedla and Rajrappa Washeries, Jharkhand, India, J. Environ. Manage. 78 (4) (2006), pp. 392–404. doi:10.1016/j.jenvman.2005.05.006.
  • L. Moore and A. Mahmoudkhani, Methods for removing selenium from aqueous systems, in Proceedings Tailings and Mine Waste, University of British Columbia, Vancouver, BC, (2011), pp. 1–5.
  • H. Ali, E. Khan, and M.A. Sajad, Phytoremediation of heavy metals—Concepts and applications, Chemosphere 91 (7) (2013), pp. 869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • J.M. Zhu, X.B. Liang, M.S. Wang, F.S. Wang, H.W. Ling, and S.R. Liu, Occurrence of selenium in the environment, Bull. Mineral. Petrol. Geochemistry 22 (2003), pp. 75–81.
  • M. Bodnar, P. Konieczka, and J. Namiesnik, The properties, functions, and use of selenium compounds in living organisms, J. Environ. Sci. Heal. 30 (3) (2012), pp. 225–252. doi:10.1080/10590501.2012.705164.
  • Z. Wu, G.S. Bañuelos, Z.-Q. Lin, Y. Liu, L. Yuan, and X. Yin, Biofortification and phytoremediation of selenium in China, Front. Plant Sci 6 (2015), pp. 1–8. doi:10.3389/fpls.2015.00136.
  • N. Geoffroy and G.P. Demopoulos, The elimination of selenium(IV) from aqueous solution by precipitation with sodium sulfide, J. Hazard. Mater. 185 (1) (2011), pp. 148–154. doi:10.1016/j.jhazmat.2010.09.009.
  • S.L. Wadgaonkar, A. Ferraro, M. Race, Y.V. Nancharaiah, K.S. Dhillon, M. Fabbricino, et al., Optimization of soil washing to reduce the selenium levels of seleniferous soil from Punjab, Northwestern India, J. Environ. Qual. 47 (6) (2018), pp. 1530p. doi:10.2134/jeq2018.05.0187.
  • D.E. Salt, M. Blaylock, N.P.B.A. Kumar, V. Dushenkov, B.D. Ensley, I. Chet, et al., Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants, Nat. Biotechnol 13 (5) (1995), pp. 468–474. doi:10.1038/nbt0595-468.
  • D. Camenzuli and B.L. Freidman, On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic, Polar Res 34 (1) (2015), pp. 24492. doi:10.3402/polar.v34.24492.
  • E.A. Pilon-Smits and D.L. LeDuc, Phytoremediation of selenium using transgenic plants, Curr. Opin. Biotechnol. 20 (2) (2009), pp. 207–212. doi:10.1016/j.copbio.2009.02.001.
  • J. Truu, L. Kärme, E. Talpsep, H. Einaru, E. Vedler, and A. Heinaru, Phytoremediation of solid oil shale waste from the chemical industry, Acta Biotechnol 23 (23) (2003), pp. 301–307. doi:10.1002/abio.200390037.
  • G.S. Bañuelos and H.F. Mayland, Absorption and distribution of selenium in animals consuming canola grown for selenium phytoremediation, Ecotoxicol. Environ. Saf. 46 (3) (2000), pp. 322–328. doi:10.1006/eesa.1999.1909.
  • T. Vamerali, M. Bandiera, and G. Mosca, Field crops for phytoremediation of metal-contaminated land, A Review, Environ. Chem. Lett 8 (1) (2010), pp. 1–17. doi:10.1007/s10311-009-0268-0.
  • R.H. Mahmoud and A.H.M. Hamza, Phytoremediation application: Plants as biosorbent for metal removal in soil and water, in Phytoremediation, A. Ansari, S. Gill, R. Gill, G.R. Lanza, L. Newman, eds., Springer, Cham, 2017, pp. 405–422. doi:10.1007/978-3-319-52381-1_15
  • J. Chen, Y. Chen, Z.-Q. Shi, Y. Su, and F.X. Han, Phytoremediation to remove metals/metalloids from soils, in Phytoremediation, A. Ansari, S. Gill, R. Gill, G.R. Lanza, L. Newman, eds., Springer, Cham, 2015, pp. 297-304. doi:10.1007/978-3-319-10969-5_24
  • Z. Vincevica-gaile, J. Burlakovs, and K. Stankevica, Phytoremediation as effective clean-up approach: Its perspectives of use in practice, in The 2nd Conference of Baltic Microbiologist, Tartu, Estonia, 2014, pp. 83–101.
  • S.K. Dhillon and K.S. Dhillon, Phytoremediation of selenium-contaminated soils: The efficiency of different cropping systems, Soil Use Manag 25 (4) (2009), pp. 441–453. doi:10.1111/j.1475-2743.2009.00217.x.
  • D.E. Salt, R.D. Smith, and I. Raskin, Phytoremediation, Annu. Rev. Plant Biol. 49 (1) (1998), pp. 643–668. doi:10.1146/annurev.arplant.49.1.643.
  • Z. Wu, G.S. Bañuelos, Z.-Q. Lin, Y. Lui, L. Yuan, X. Yin, et al., Biofortification and phytoremediation of selenium in China, Front. Plant Sci 6 (2015), pp. 136. doi:10.3389/fpls.2015.00136.
  • J.L. Freeman, M.A. Marcus, S.C. Fakra, J. Devonshire, S.P. McGrath, C.F. Quinn, et al., Selenium hyperaccumulator plants stanleya pinnata and Astragalus bisulcatus are colonized by Se-resistant, Se-excluding wasp and beetle seed herbivores, PLoS One 7 (12) (2012), pp. e50516. doi:10.1371/journal.pone.0050516.
  • L.F.D. Filippis, Biochemical and molecular aspects in phytoremediation of selenium, in Plant Adaptation and Phytoremediation, M. Ashraf, M. Ozturk, M. Ahmad, eds., Springer, Dordrecht, 2010, pp. 193–226. doi:10.1007/978-90-481-9370-7_10.
  • R. John, P. Ahmad, K. Gadgil, and S. Sharma, Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L, Int. J. Plant Prod 3 (2009), pp. 65–76.
  • V.R. Angelova, R.I. Ivanova, J.M. Todorov, and K.I. Ivanov, Potential of rapeseed (Brassica napus L.) for phytoremediation of soils contaminated with heavy metals, J. Environ. Prot. Ecol 18 (2017), pp. 468–478.
  • G. Gajić, L. Djurdjević, O. Kostić, S. Jarić, M. Mitrović, and P. Pavlović, Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes, Front. Environ. Sci. 6 (2018), pp. 124p. doi:10.3389/fenvs.2018.00124.
  • M.U. Khan, M. Ahmed, S.S. Shaukat, K. Nazim, and Q.M. Ali, Effect of industrial waste on early growth and phytoremediation potential of avicennia marina (Forsk.) Vierh, Pakistan J. Bot 45 (2013), pp. 17–27.
  • G. Bañuelos, N. Terry, D.L. Leduc, E.A.H. Pilon-Smits, and B. Mackey, Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment, Environ. Sci. Technol. 39 (6) (2005), pp. 1771–1777. doi:10.1021/es049035f.
  • M. Szczygłowska, A. Piekarska, P. Konieczka, and J. Namieśnik, Use of brassica plants in the phytoremediation and biofumigation processes, Int. J. Mol. Sci 12 (11) (2011), pp. 7760–7771. doi:10.3390/ijms12117760.
  • S. Lampis, A. Ferrari, A.C.F. Cunha-Queda, P. Alvarenga, S. Di Gregorio, and G. Vallini, Selenite resistant rhizobacteria stimulate SeO32– Phytoextraction by Brassica juncea in bioaugmented water-filtering artificial beds, Environ. Sci. Pollut. Res. 16 (6) (2009), pp. 663–670. doi:10.1007/s11356-008-0088-y.
  • M. Limmer and J. Burken, Phytovolatilization of Organic Contaminants, Environ. Sci. Technol 50 (13) (2016), pp. 6632–6643. doi:10.1021/acs.est.5b04113.
  • S. Mukhopadhyay and S. Maiti, Phytoremediation of metal mine waste, Appl. Ecol. Environ. Res. 8 (2010), pp. 207–222.
  • E. Pilon-Smits, Phytoremediation, Annu. Rev. Plant Biol. 56 (1) (2005), pp. 15–39. doi:10.1146/annurev.arplant.56.032604.144214.
  • P. Pachura, A. Ociepa-Kubicka, and B. Skowron-Grabowska, Assessment of the availability of heavy metals to plants based on the translocation index and the bioaccumulation factor, Desalin. Water Treat 57 (3) (2016), pp. 1469–1477. doi:10.1080/19443994.2015.1017330.
  • L. Marchiol, P. Sacco, S. Assolari, and G. Zerbi, Reclamation of polluted soil: Phytoremediation potential of crop-related Brassica species, Water. Air. Soil Pollut (1) (2004), pp. 345–356. doi:10.1023/B:WATE.0000044862.51031.fb.
  • M. Kamaraj, R. Sivaraj, P.V. Subha, L. Jansi, and M. Manjudevi, Uptake of mineral elements by Brassica juncea and its effects on biochemical parameters, Pelagia Res. Libr. Adv. Appl. Sci. Res. 3 (2012), pp. 1039–1044.
  • R.K. Bhadkariya, V. Jain, G. Chak, and S. Gupta, Remediation of cadmium by Indian mustard (Brassica juncea L.) from cadmium contaminated soil: A phytoextraction study, Int. J. Environ 3 (2) (2014), pp. 229–237. doi:10.3126/ije.v3i2.10533.
  • R.G. Lacalle, M.T. Gómez-Sagasti, U. Artetxe, C. Garbisu, and J.M. Becerril, Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation, Sci. Total Environ 618 (2018), pp. 347–356. doi:10.1016/j.scitotenv.2017.10.334.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.