903
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Multi-stage optimization framework for the real-time truck decision problem in open-pit mines: a case study on Sungun copper mine

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 461-491 | Received 28 Sep 2021, Accepted 15 Apr 2022, Published online: 05 May 2022

References

  • R. Mena, Z. Enrico, K. Fredy, and A. Adolfo, Availability-based simulation and optimization modeling framework for open-pit mine truck allocation under dynamic constraints, Int. J. Min. Sci. Technol. 23(1) (2013), pp. 113–119. doi:10.1016/j.ijmst.2013.01.017.
  • S. Alarie and M. Gamache, Overview of solution strategies used in truck dispatching systems for open pit mines, Int. J. Surf. Min. Reclam. Environ. 16(1) (2002), pp. 59–76. doi:10.1076/ijsm.16.1.59.3408.
  • M.J.F. Souza, I.M. Coelho, S. Ribas, H.G. Santos, and L.H.C. Merschmann, A hybrid heuristic algorithm for the open-pit-mining operational planning problem, Eur. J. Oper. Res. 207(2) (2010), pp. 1041–1051. doi:10.1016/j.ejor.2010.05.031.
  • E. Torkamani and H. Askari-Nasab, A linkage of truck-and-shovel operations to short-term mine plans using discrete-event simulation, Int. J. Min. Mineral Eng. 6(2) (2015), pp. 97–118. doi:10.1504/IJMME.2015.070367.
  • A.S. Hashemi and J. Sattarvand, Simulation based investigation of different fleet management paradigms in open pit mines-A case study of Sungun copper mine//symulacje I Badania Różnych Paradygmatów Wykorzystania Floty Pojazdów I Urządzeń W Kopalniach Odkrywkowych, Studium Przypadku: Kopalnia Miedzi W Sungun, Arch. Min. Sci. 60(1) (2015), pp. 195–208.
  • A. Moradi-Afrapoli, M. Tabesh, and H. Askari-Nasab, A multiple objective transportation problem approach to dynamic truck dispatching in surface mines, Eur. J. Oper. Res. 276(1) (2019), pp. 331–342. doi:10.1016/j.ejor.2019.01.008.
  • B. Ozdemir and M. Kumral, Simulation-based optimization of truck-shovel material handling systems in multi-pit surface mines, Simul. Model. Pract. Theory 95 (2019), pp. 36–48. doi:10.1016/j.simpat.2019.04.006.
  • M. Yeganejou, M. Badiozamani, A. Moradi-Afrapoli, and H. Askari-Nasab, Integration of simulation and dispatch modelling to predict fleet productivity: An open-pit mining case, Min. Technol. (2021), pp. 1–13.
  • H. Bnouachir, H.A. Semmar, and H. Medromi, Intelligent fleet management system for open pit mine, Int. J. Adv. Comput. Sci. Appl. 11(5) (2020), pp. 327–332. doi:10.14569/IJACSA.2020.0110543.
  • A. Moradi-Afrapoli and H. Askari-Nasab, Mining fleet management systems: A review of models and algorithms, Int. J. Min. Reclam. Environ. 33(1) (2017), pp. 1–19.
  • J.W. White and J.P. Olson, Computer-based dispatching in mines with concurrent operating objectives, Min. Eng. Littleton. 38(11) (1986), pp. 1045–1054.
  • J.P. Olson, S.I. Vohnout, and J. White, On improving truck/shovel productivity in open pit mines, CIM Bull. 86(973) (1993), pp. 43–49.
  • M. Munirathinam and J.C. Yingling, A review of computer-based truck dispatching strategies for surface mining operations, Int. J. Surf. Min. Reclam. Environ. 8(1) (1994), pp. 1–15. doi:10.1080/09208119408964750.
  • F. Soumis, F. Ethier, and J. Elbrond Evaluation of the new truck dispatching in the Mount Wright Mine. In: 21st Application of Computers and Operations Research in the Minerals Industry, SME, (1990), p. 674–682.
  • Z. Li, A methodology for the optimum control of shovel and truck operations in open-pit mining, Min. Sci. Technol. 10(3) (1990), pp. 337–340. doi:10.1016/0167-9031(90)90543-2.
  • V.A. Temeng, F.O. Otuonye, and J.O. Frendewey, Real-time truck dispatching using a transportation algorithm, Int. J. Surf. Min., Reclam. Environ. 11(4) (1997), pp. 203–207. doi:10.1080/09208119708944093.
  • R.F. Subtil, D.M. Silva, and J.C. Alves, A practical approach to truck dispatch for open pit mines, in 35th APCOM, University of Wollongong, Wollongong, NSW, Australia, 2011 , pp. 765–777.
  • T. Markeset and U. Kumar Application of LCC techniques in selection of mining equipment and technology. Mine planning and equipment selection 2000. In Proceedings of the Ninth International Symposium on Mine Planningand Equipment Selection, Nov 6–9, Athens, Greece. A.A. Balkema, Rotterdam (2002), pp. 635–640.
  • B. Samanta, B. Sarkar, and S. Mukherjee, Selection of opencast mining equipment by a multi-criteria decision-making process, Min. Technol. 111(2) (2002), pp. 136–142. doi:10.1179/mnt.2002.111.2.136.
  • H. Jang and E. Topal, A review of soft computing technology applications in several mining problems, Appl. Soft Comput. 22 (2014), pp. 638–651. doi:10.1016/j.asoc.2014.05.019.
  • S.D. Smith, G.S. Wood, and M. Gould, A new earthworks estimating methodology, Constr. Manage. Econ. 18(2) (2000), pp. 219–228. doi:10.1080/014461900370843.
  • C.N. Burt and L. Caccetta, Equipment selection for surface mining: A review, Interfaces (Providence). 44(2) (2014), pp. 143–162. doi:10.1287/inte.2013.0732.
  • C. Burt, L. Caccetta, P. Welgama, and L. Fouché, Equipment selection with heterogeneous fleets for multiple-period schedules, J. Oper. Res. Soc. 62(8) (2011), pp. 1498–1509. doi:10.1057/jors.2010.107.
  • M. Fisonga, V. Mutambo, and R.F. Colmenares, Optimization of the fleet per shovel productivity in surface mining: Case study of Chilanga Cement, Lusaka Zambia, Cogent Eng. 4(1) (2017), pp. 1–16. doi:10.1080/23311916.2017.1386852.
  • O. Pasch and S. Uludag, Optimization of the load-and-haul operation at an opencast colliery, J. South. Af. Inst. Min. Metall. 118(5) (2018), pp. 449–456. doi:10.17159/2411-9717/2018/v118n5a1.
  • M. Mohtasham, H. Mirzaei-Nasirabad, H. Askari-Nasab, and B. Alizadeh, Truck fleet size selection in open-pit mines based on the match factor using a MINLP model, Min. Technol. 130(3) (2021), pp. 1–17. doi:10.1080/25726668.2021.1919374.
  • A. Michiotis, D. Xerocostas, and N. Galitis, A new integrated system for selecting mining equipment, Comput. Ind. Eng. 34(2) (1998), pp. 391–397. doi:10.1016/S0360-8352(97)00164-2.
  • D.J. Edwards, H. Malekzadeh, and S.B. Yisa, A linear programming decision tool for selecting the optimum excavator, Struct. Surv. 19(2) (2001), pp. 113–120. doi:10.1108/EUM0000000005628.
  • Z. Fu, E. Topal, and O. Erten, Optimisation of a mixed truck fleet schedule through a mathematical model considering a new truck-purchase option, Min. Technol. 123(1) (2014), pp. 30–35. doi:10.1179/1743286314Y.0000000055.
  • A.A. Bazzazi, M. Osanloo, and B. Karimi, Deriving preference order of open pit mines equipment through MADM methods: Application of modified VIKOR method, Expert Syst. Appl. 38(3) (2011), pp. 2550–2556. doi:10.1016/j.eswa.2010.08.043.
  • R. Ganguli and S. Bandopadhyay, Expert system for equipment selection, Int. J. Surf. Min., Reclam. Environ. 16(3) (2002), pp. 163–170. doi:10.1076/ijsm.16.3.163.7420.
  • S.H.L. Mirhosseyni and P. Webb, A hybrid fuzzy knowledge-based expert system and genetic algorithm for efficient selection and assignment of material handling equipment, Expert Syst. Appl. 36(9) (2009), pp. 11875–11887. doi:10.1016/j.eswa.2009.04.014.
  • A. Lashgari, A. Yazdani–chamzini, M.M. Fouladgar, E.K. Zavadskas, S. Shafiee, and N. Abbate, Equipment selection using fuzzy multi criteria decision making model: Key study of Gole Gohar iron mine, Eng. Econ. 23(2) (2012), pp. 125–136. doi:10.5755/j01.ee.23.2.1544.
  • N. Ataeepour and E. Baafi, ARENA simulation model for truck-shovel operation in despatching and non-despatching modes, Int. J. Surf. Min., Reclam. Environ. 13(3) (1999), pp. 125–129. doi:10.1080/09208119908944228.
  • P. Chaowasakoo, H. Seppälä, H. Koivo, and Q. Zhou, Improving fleet management in mines: The benefit of heterogeneous match factor, Eur. J. Oper. Res. 261 (3) (2017), pp. 1052–1065. doi:10.1016/j.ejor.2017.02.039.
  • S. Dindarloo, M. Osanloo, and S. Frimpong, A stochastic simulation framework for truck and shovel selection and sizing in open pit mines, J. South. Afr. Inst. Min. Metall. 115(3) (2015), pp. 209–219. doi:10.17159/2411-9717/2015/v115n3a6.
  • S. Que, A. Anani, and K. Awuah-Offei, Effect of ignoring input correlation on truck–shovel simulation, Int. J. Min., Reclam. Environ. 30(5) (2016), pp. 405–421. doi:10.1080/17480930.2015.1099188.
  • W. Zeng, E. Baafi, and D. Walker, A simulation model to study bunching effect of a truck-shovel system, Int. J. Min., Reclam. Environ. 33(2) (2019), pp. 102–117. doi:10.1080/17480930.2017.1348284.
  • A. Jaoua, D. Riopel, and M. Gamache, A simulation framework for real-time fleet management in internal transport systems, Simul. Modell. Pract. Theory 21(1) (2012), pp. 78–90. doi:10.1016/j.simpat.2011.10.003.
  • M.S. Shishvan and J. Benndorf, Simulation-Based optimization approach for material dispatching in continuous mining systems, Eur. J. Oper. Res. 275(3) (2019), pp. 1108–1125. doi:10.1016/j.ejor.2018.12.015.
  • S.P. Upadhyay and H. Askari-Nasab, Simulation and optimization approach for uncertainty-based short-term planning in open pit mines, Int. J. Min. Sci. Technol. 28(2) (2018), pp. 153–166. doi:10.1016/j.ijmst.2017.12.003.
  • S. Dindarloo and E. Siami-Irdemoosa Merits of discrete event simulation in modeling mining operations. SME Annual Meeting 2016, Phoenix, AZ, 24–26.
  • R.S. Suglo and S. Al-Hassan, Use of simulation techniques in determining the fleet requirements of an open pit mine, Ghana Min. J. 9 (2007), pp. 25–32.
  • Y. Tan, K. Miwa, U. Chinbat, and S. Takakuwa Operations modeling and analysis of open pit copper mining using GPS tracking data, In Proceedings of the 2012 Winter Simulation Conference (WSC), IEEE, p. 1–12.
  • P. Chaowasakoo Matching truck-and-shovel operations in open-pit mines using statistical data-dispatching strategies, match factor, and age-based maintenance, PhD thesis, Aalto University, Department of Electrical Engineering and Automation, Finland, (2017).
  • A. Moradi-Afrapoli, M. Tabesh, and H. Askari-Nasab, A stochastic hybrid simulation-optimization approach towards haul fleet sizing in surface mines, Min. Technol. 128(1) (2018), pp. 9–20. doi:10.1080/25726668.2018.1473314.
  • C.Z. Gurgur, K. Dagdelen, and S. Artittong, Optimization of a real-time multi-period truck dispatching system in mining operations, Int. J. Appl. Decis. Sci. 4(1) (2011), pp. 57–79.
  • C.H. Ta, J.V. Kresta, J.F. Forbes, and H.J. Marquez, A stochastic optimization approach to mine truck allocation, Int. J. Surf. Min. Reclam. Environ. 19(3) (2005), pp. 162–175. doi:10.1080/13895260500128914.
  • Y. Chang, H. Ren, and S. Wang, Modelling and optimizing an open-pit truck scheduling problem, Discrete Dyn. Nat. Soc. 2015 (2015), pp. 1–8. doi:10.1155/2015/745378
  • S.P. Upadhyay and H. Askari-Nasab, Truck-Shovel allocation optimisation: A goal programming approach, Min. Technol. 125(2) (2016), pp. 1–11. doi:10.1179/1743286315Y.0000000024.
  • M. Mohtasham, H. Mirzaei-Nasirabad, H. Askari-Nasab, and B. Alizadeh, A multi-objective model for fleet allocation schedule in open-pit mines considering the impact of prioritising objectives on transportation system performance, Int. J. Min., Reclam. Environ. 35(9) (2021), pp. 1–19. doi:10.1080/17480930.2021.1949861.
  • M.E.V. Matamoros and R. Dimitrakopoulos, Stochastic short-term mine production schedule accounting for fleet allocation, operational considerations and blending restrictions, Eur. J. Oper. Res. 255(3) (2016), pp. 911–921. doi:10.1016/j.ejor.2016.05.050.
  • M. Blom, A.R. Pearce, and P.J. Stuckey‌, Short-term scheduling of an open-pit mine with multiple objectives, Eng. Optim. 49 (5) (2017), pp. 777–795. doi:10.1080/0305215X.2016.1218002.
  • S. Benlaajili, F. Moutaouakkil, A. Chebak, H. Medromi, L. Deshayes, and S. Mourad Optimization of truck-shovel allocation problem in open-pit mines. in International Conference on Smart Applications and Data Analysis 2020, Jun 25; Springer, Cham.
  • M. Quigley and R. Dimitrakopoulos, Incorporating geological and equipment performance uncertainty while optimising short-term mine production schedules, Int. J. Min. Reclam. Environ. 34(5) (2002), pp. 362–383. doi:10.1080/17480930.2019.1658923.
  • C. Both and R. Dimitrakopoulos, Joint stochastic short term production scheduling and fleet management optimization for mining complexes, Complexes Eng. 21(4) (2020), pp. 1–27.
  • F. Manríquez, H. González, and N. Morales, Short-Termopen-pit production scheduling optimizing multiple objectives accounting for shovel allocation in stockpiles, Optim. Eng. (2022), pp. 1–27.
  • V.A. Temeng, F.O. Otuonye, and J.O. Frendewey, A nonpreemptive goal programming approach to truck dispatching in open pit mines, Min. Res. Eng. 7(02) (1998), pp. 59–67. doi:10.1142/S0950609898000092.
  • M. Mohtasham, H. Mirzaei-Nasirabad, and A. Mahmoodi Markid, Development of a goal programming model for optimization of truck allocation in open pit mines, J. Min. Env. 8(3) (2017), pp. 359–371.
  • H. Mirzaei-Nasirabad, M. Mohtasham, and M. Omidbad, Comparison of the various dispatching strategies for truck-shovel productivity optimization in open pit mines, Int. J. Min. Geo-Eng. 53(2) (2019), pp. 193–201.
  • M. Mohtasham, H. Mirzaei-Nasirabad, and B. Alizadeh, Optimization of truck-shovel allocation in open-pit mines under uncertainty: A chance-constrained goal programming approach, Min. Technol. 130(2) (2021), pp. 81–100. doi:10.1080/25726668.2021.1916170.
  • B. Forsman, E. Rönnkvist, and N. Vagenas, Truck dispatch computer simulation in Aitik open pit mine, Int. J. Surf. Min., Reclam. Environ. 7(3) (1993), pp. 117–120. doi:10.1080/17480939308547571.
  • A. Arelovich, F. Masson, O. Agamennoni, S. Worrall, and E. Nebot Heuristic rule for truck dispatching in open-pit mines with local information-based decisions. In: 13th International IEEE Conference on Intelligent Transportation Systems, Funchal (2010), pp.1408–1414.
  • W. Cox, T. French, M. Reynolds, and L. While A genetic algorithm for truck dispatching in mining. In GCAI. October (2017), p. 93–106.
  • G.S. Bastos, Decision making applied to shift change in stochastic open-pit mining truck dispatching, IFAC Proc. 46(16) (2013), pp. 34–39.
  • M. Koryagin and A. Voronov, Improving the organization of the shovel-truck systems in open-pit coal mines, Transp. Probl. 12(2) (2017), pp. 113–122. doi:10.20858/tp.2017.12.2.11.
  • G.I. Ahumada and O. Herzog, Application of multiagent system and Tabu search for truck dispatching in open-pit mines, In ICAART (2021), pp. 160–170.
  • R.F. Alexandre, F. Campelo, and J.A. de Vasconcelos, Multi-Objective evolutionary algorithms for the truck dispatch problem in open-pit mining operations, Learn. Nonlinear Models. 17(2) (2019), pp. 53–66. doi:10.21528/lnlm-vol17-no2-art5.
  • V. Sgurev, V. Vassilev, N. Dokev, K. Genova, S. Drangajov, K. Ch, and A. Atanassov, Trasy—An automated system for real-time control of the industrial truck haulage in open-pit mines, Eur. J. Oper. Res. 43(1) (1989), pp. 44–52. doi:10.1016/0377-2217(89)90408-6.
  • M.X. He, J.C. Wei, X.M. Lu, and B.X. Huang, The genetic algorithm for truck dispatching problems in surface mine, Inf. Technol. J. 9(4) (2010), pp. 710–714. doi:10.3923/itj.2010.710.714.
  • S.R. Patterson, E. Kozan, and P. Hyland, Energy efficient scheduling of open-pit coal mine trucks, Eur. J. Oper. Res. 262(2) (2017), pp. 759–770. doi:10.1016/j.ejor.2017.03.081.
  • Y. Xi and T.M. Yegulalp, Optimum dispatching algorithm for Anshan open-pit mine, in 24th APCOM, Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Quebec, Canada, 1993.
  • D.K. Ahangaran, A.B. Yasrebi, A. Wetherelt, and P. Foster, Real-time dispatching modelling for trucks with different capacities in open pit mines, Arch. Min. Sci. 57 (1) (2012), pp. 39–52.
  • W. Morgan and L. Peterson, Determining shovel-truck productivity, Min. Eng. 20(12) (1986), pp. 76–78.
  • C.N. Burt and L. Caccetta, Match factor for heterogeneous truck and loader fleets, Int. J. Min., Reclam. Environ. 21(4) (2007), pp. 262–270. doi:10.1080/17480930701388606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.