243
Views
0
CrossRef citations to date
0
Altmetric
Article

Experimental study of mudrush mechanisms under different moisture contents in block caving

, , , &
Pages 243-254 | Received 05 Apr 2022, Accepted 05 Jan 2023, Published online: 09 Jan 2023

References

  • D.H. Laubscher, Mud flow/mud push and water inflow potential, in Block cave manual, D.H. Laubscher, eds., Brisbane: International Caving Study (1997-2000), 2000, pp. 1–9.
  • J. Jakubec, R. Clayton, and A.R. Guest, Mudrush risk evaluation. 6th International Conference & Exhibition on Mass Mining, Massmin. Sudbury: Canadian Institute of Mining, Metallurgy and Petroleum, 2012.
  • R.J. Butcher, Hazards associated with the mining of diamondiferous pipes, CIM Bull. 93 (2000), pp. 65–67.
  • R.L. Castro, K. Basaure, S. Palma, and J. Vallejos, Geotechnical characterization of ore related to mudrushes in block caving mining, J. South. African Inst. Min. Metall 117 3 (2017), pp. 275–284. doi:10.17159/2411-9717/2017/v117n3a9
  • G. Hubert, S. Dirdjosuwondo, R. Plaisance, and L. Thomas, Tele-operation at Freeport to reduce wet muck hazards, Massmin 2000 proceedings, Brisbane, 2000; pp. 173–180.
  • T. Syaifullah, E. Widijanto, and A. Shrikant, Water issues in DOZ block cave mine, PT Freeport Indonesia, Water in Mining Conference, Melbourne, 2006; pp. 361–368.
  • E. Samosir, J. Basuni, E. Widijanto, and T. Syaifullah, The management of wet muck at PT Freeport Indonesia’s deep ore zone mine, 5Th Conference and Exhibition on Mass Mining, Lulea, 2008, pp. 322–332.
  • R. Butcher, T.R. Stacey, and W.C. Joughin, Mud rushes and methods of combating them, J. South. African Inst. Min. Metall 105 (2005), pp. 817–824.
  • M. Ferrada, Gravity flow under moisture conditions – control and management of drawpoint mudflow, Proceedings of the 35th International Symposium of Application of Computers and Operations Research in the Minerals Industry, APCOM 2011, New South Wales, 2011, pp. 761–764.
  • A. Holder, A.J. Rogers, P.J. Bartlett, and G.J. Keytert, Review of mud rush mitigation on Kimberly's old scraper drift block caves, J. South. African Inst. Min. Metall 113 (2013), pp. 529–537.
  • J. Zhang, Mud inrush flow mechanisms: A case study in a water-rich fault tunnel, Bull. Eng. Geol. Environ 78 8 (2019), pp. 6267–6283. doi:10.1007/s10064-019-01508-z
  • J. Vallejos, K. Basaure, S. Palma, and R.L. Castro, Methodology for evaluation of mud rush risk in block caving mining, J. South. African Inst. Min. Metall. 117 5 (2017), pp. 491–497. doi:10.17159/2411-9717/2017/v117n5a11
  • E. Widijanto, A.D. Wilson, and L. Soebari, Lessons learned in wet muck management in Ertsberg East skarn system of PT Freeport Indonesia, 2012.
  • C. Becerra, Controlling drawpoint prone to pumping, El Teniente mine, 2011.
  • I. Navia, R. Castro, and M.E. Valencia, Statistical analyses of mud entry at diablo regimiento sector - El Teniente’s mine, 3rd International symposium on block and sublevel caving, Santiago, 2014, pp. 372–378.
  • A. Hekmat, A. Anani, F. Tapia, and I. Navia, Mud inflow risk assessment in block caving operation based on AHP comprehensive method, Proceedings of the 18th Symposium on Environmental Issues and Waste Management in Energy and Mineral Production, Santiago, 2018; pp. 51–66.
  • R. Castro, D. Garcés, A. Brzovic, and F. Armijo, Quantifying wet muck entry risk for long-term planning in block caving, Rock Mech. Rock Eng. 51 9 (2018), pp. 2965–2978. doi:10.1007/s00603-018-1512-3
  • O. Salas, R. Castro, E. Viera, K. Basaure, F. Hidalgo, and M. Pereira, Modelling of wet muck entry at El Teniente for long-term planning, Caving 2022: Fifth International Conference on Block and Sublevel Caving, 2022; pp. 545–560. doi:10.36487/ACG_repo/2205_37.
  • L.E. Widodo, E. Widijanto, I. Faadhilah, and W. Sunyoto, Fuzzy-based prediction of spatio-temporal distribution of wet muck in block cave mine of PT Freeport Indonesia, J. Eng. Technol. Sci. 50 2 (2018), pp. 291–313. doi:10.5614/j.eng.technol.sci.2018.50.2.9
  • L. Dorador, E. Eberhardt, D. Elmo, and A. Aguayo, Assessment of broken ore density variations in a block cave draw column as a function of fragment size distributions and fines migration, 3rd International symposium on block and sublevel caving, Santiago, 2014; no. 2012, pp. 1–8.
  • L. Dorador, Experimental Investigation of the Effect of Broken Ore Properties on Secondary Fragmentation During Block Caving, Vancourver: University of British Columbia, 2016.
  • K. Sánchez, S. Palma, and R.L. Castro, Numerical modelling of water flow through granular material for isolated and simultaneous extractions in block caving, Rock Mech. Rock Eng. 52 1 (2019), pp. 133–147. doi:10.1007/s00603-018-1587-x
  • D.V. Boger, Rheology and the resource industries, Chem. Eng. Sci. 64 22 (2009), pp. 4525–4536. doi:10.1016/j.ces.2009.03.007.
  • Z. Zhou, M.J. Solomon, P.J. Scales, and D.V. Boger, The yield stress of concentrated flocculated suspensions of size distributed particles, J. Rheol. (N. Y. N. Y.) 43 3 (1999), pp. 651–671. doi:10.1122/1.551029.
  • C. Ancey and H. Jorrot, Yield stress for particle suspensions within a clay dispersion, J. Rheol. (N. Y. N. Y.) 45 2 (2001), pp. 297–319. doi:10.1122/1.1343879.
  • B. Yu, Y. Ma, and X. Qi, Experimental study on the influence of clay minerals on the yield stress of debris flows, J. Hydraul. Eng. 139 4 (2013), pp. 364–373. doi:10.1061/(ASCE)HY.1943-7900.0000679.
  • V. Sánchez, R.L. Castro, and S. Palma, Gravity flow characterization of fine granular material for block caving, Int. J. Rock. Mech. Min. Sci. 114 November (2019), pp. 24–32. 2018. doi:10.1016/j.ijrmms.2018.12.011
  • P. Cavieres, Dimensionamiento entre puntos de extracción y niveles de producción/socavación para método Panel Caving en roca primaria mina El Teniente, 2002.
  • E.T. Brown, Block Caving Geomechanics, Second Edi, Queensland: Julius Kruttschnitt Mineral Research Centre, 2007.
  • P. Paredes, F. Rodríguez, R. Castro, D. Morales, and D. García, Design and evaluation of single-phase drawbell excavation at the Chuquicamata underground mine, J. South. African Inst. Min. Metall 119 12 (2019), pp. 1061–1070. doi:10.17159/2411-9717/682/2020
  • K. Mühlenbrock, D. Silva, R. Navarrete, and L. Mardonez, Construction of the first macro block at the Chuquicamata underground project, Eighth International Conference & Exhibition on Mass Mining, Massmin 2020, 2020; pp. 127–139.
  • ASTM D3080/D3080M12. Standard test method for direct shear test of soils under consolidated drained conditions, Am. Soc. Test. Mater. 3 (2011), pp. 9.
  • ASTM, Standard test method for specific gravity and absorption of coarse aggregate, ASTM Stand 83 (2021), pp. 7–9.
  • ASTM D 854, Standard test methods for of soil specific gravity solids by water pycnometer, ASTM Stand. 24 1 (2018).
  • ASTM. C143, Standard test method for slump of hydraulic-cement concrete, Am. Soc. Test. Mater. (2003).
  • N.Q. Dzuy and D.V. Boger, Yield stress measurement for concentrated suspensions, J. Rheol. (N. Y. N. Y.) 27 4 (1983), pp. 321–349. doi:10.1122/1.549709.
  • Codelco, Procedimiento general para el control de riesgos de bombeo de agua-barro en la mina (Internal report), Santiago, 2017.
  • R. Castro, R. Gómez, and A. Hekmat, Experimental quantification of hang-up for block caving applications, Int. J. Rock. Mech. Min. Sci. 85 (2016), pp. 1–9. doi:10.1016/j.ijrmms.2016.02.005.
  • M. Beus, W. Pariseau, B. Stewart, and S. Iverson, Design of Ore Passes, in Underground Mining Methods, W. Hustrulid and R. Bullock eds., Englewood: SME, 2001, pp. 627–634.
  • R.M. Nedderman, Statics and Kinematics of Granular Materials, New York: Cambridge University Press, 1992.
  • J. Jaky, Earth pressure - pressure in silos, Second International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, 1948; pp. 103–107.
  • R. Jones, H.M. Pollock, J.A. Cleaver, and C.S. Hodges, Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness, and surface treatment, Langmuir 18 21 (2002), pp. 8045–8055. doi:10.1021/la0259196.
  • X. Li, M. Dong, H. Zhang, S. Li, and Y. Shang, Effect of surface roughness on capillary force during particle-wall impaction under different humidity conditions, Powder Technol. 371 (2020), pp. 244–255. doi:10.1016/j.powtec.2020.05.053.
  • I. Brunton, J.L. Lett, and T. Thornhill, Fragmentation prediction and assessment at the ridgeway deeps and Cadia East cave operation, Seventh International Conference & Exhibition on Mass Mining, Massmin 2016, Sydney, 2016; pp. 151–160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.