223
Views
1
CrossRef citations to date
0
Altmetric
Article

Mechanical and microstructural characteristics of cemented paste tailings modified with nano-calcium carbonate and cured under various thermal conditions

, & ORCID Icon
Pages 277-296 | Received 20 Oct 2022, Accepted 20 Jan 2023, Published online: 07 Feb 2023

References

  • L.M. Amaratunga and D.N. Yaschyshyn, Development of a high modulus paste fill using fine gold mill tailings, Geotechnical & Geological Engineering 15 (3) (1997), pp. 205–219. doi:10.1007/BF00880825.
  • G. Blight (2009). Geotechnical Engineering for Mine Waste Storage Facilities. CRC Press. Retrieved from https://books.google.ca/books?id=OdFp3wKyxJoC
  • Statista. (2013). Mine Lifespan by Selected Commodities. https://www.statista.com/statistics/255479/mine-life-per-commodity/.
  • D.W. Rennie, R.D. Bergen, and H. Krutzelmann (2015). Technical Report on the New Afton Mine, British Columbia, Canada NI 43-101 Report. Vol. 1.
  • M. Fall, M. Benzaazoua, and E.G. Saa, Mix proportioning of underground cemented tailings backfill, Tunnelling and Underground Space Technology 23 (1) (2008), pp. 80–90. doi:10.1016/j.tust.2006.08.005.
  • B. Lottermoser, Mine Wastes: Characterization, Treatment and Environmental Impacts, Springer, Berlin Heidelberg, 2010. doi:10.1007/978-3-642-12419-8
  • E. Yilmaz, A. Kesimal, and B. Ercidi (2004). Strength development of paste backfill simples at long term using different binders. In Proceedings of 8th symposium MineFill04, China, p. 281–285.
  • M. Fall, M. Benzaazoua, and S. Ouellet, ‘Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill, Minerals Engineering 18 (1) (2005), pp. 41–44. doi:10.1016/j.mineng.2004.05.012.
  • A. Bull (2019). Temperature Dependence of the Leachability of Cemented Paste Backfill. M.A.Sc Thesis: University of Ottawa.
  • M. Cao, X. Ming, K. He, L. Li, and S. Shen, Effect of macro-, micro- and nano-calcium carbonate on properties of cementitious composites—a review, Materials 12 (5) (2019), pp. 781. doi:10.3390/ma12050781.
  • L. McDonald, F.P. Glasser, and M.S. Imbabi, A new carbon-negative precipitated calcium carbonate admixture (PCC-A) for low carbon Portland cements, Materials. 12 (4) (2019), pp. 554. MDPI AG. 10.3390/ma12040554.
  • World Cement. (2012). The use of waste calcium carbonate powders. https://www.worldcement.com/africa-middle-east/31052012/the_use_of_waste_calcim_carbonate_powders/.
  • A. Maisarah, M.S. Abdullah, and S.A. Saad, Effect of calcium carbonate replacement on workability and mechanical strength of Portland cement concrete, Advanced Materials Research 1115 (2015), pp. 137–141. doi:10.4028/scientific.net/AMR.1115.137.
  • E. Batuecas, F. Liendo, T. Tommasi, S. Bensaid, F. Deorsola, and D. Fino, Recycling CO2 from flue gas for CaCO3 nanoparticles production as cement filler: A Life Cycle Assessment, J. CO2 Util 45 (2021), pp. 101446. doi:10.1016/j.jcou.2021.101446.
  • J. Silvestre, N. Silvestre, and J. de Brito, Review on concrete nanotechnology, Eur. J. Environ. Civ. Eng 20 (4) (2016), pp. 455–485. doi:10.1080/19648189.2015.1042070.
  • L. Poudyal, K. Adhikari, and M. Won, Mechanical and durability properties of Portland limestone cement (PLC) incorporated with nano calcium carbonate (CaCO3), Materials 14 (4) (2021b), pp. 905. doi:10.3390/ma14040905.
  • I. Cosentino, F. Liendo, M. Arduino, L. Restuccio, S. Bensaid, F. Deorsola, and G.A. Ferro, Nano CaCO3 particles in cement mortars towards developing a circular economy in the cement industry, Procedia Structural Integrity 26 (2020), pp. 155–165. doi:10.1016/j.prostr.2020.06.019.
  • T. Sato and J. Beaudoin, Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials, Advances in Cement Research 23 (1) (2011), pp. 33–43. doi:10.1680/adcr.9.00016.
  • Y. Sun, P. Zhang, W. Guo, J. Bao, and C. Qu, Effect of nano-CaCO3 on the mechanical properties and durability of concrete incorporating fly ash, Advances in Materials Science and Engineering 2020. 2020 Article ID 7365862, (2020), pp. 1–10. 10.1155/2020/7365862.
  • J. Yang (2020). Effect of nano CaCO3 on durability of concrete. E3S Web of Conferences, Changchun, China, 165, 03029.
  • M. Fall, J.C. Célestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Engineering Geology 114 (3) (2010), pp. 397–413. doi:10.1016/j.enggeo.2010.05.016.
  • O. Nasir and M. Fall, Modeling the heat development in hydrating CPB structures, Computers and Geotechnics 36 (7) (2009), pp. 1207–1218. doi:10.1016/j.compgeo.2009.05.008.
  • D. Wu, M. Fall, and S. Cai, Coupled modeling of temperature distribution and evolution in cemented tailings backfill structures that contain mineral admixtures, Geotechnical and Geological Engineering 30 (4) (2012), pp. 935–961. doi:10.1007/s10706-012-9518-1.
  • Z. Aldhafeeri and M. Fall, Sulphate induced changes in the reactivity of cemented tailings backfill, International Journal of Mineral Processing 166 (2017), pp. 13–23. doi:10.1016/j.minpro.2017.06.007.
  • E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, and M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Constr. Build. Mater. 75 (2015), pp. 99–111. doi:10.1016/j.conbuildmat.2014.11.008.
  • A. Ghirian and M. Fall, Coupled thermo-hydro-mechanical-chemical behaviour of cemented paste backfill in column experiments. Part 1: Physical, hydraulic and thermal processes and characteristics, Engineering Geology 164 (2013), pp. 195–207. doi:10.1016/j.enggeo.2013.01.015.
  • L. Poudyal, K. Adhikari, and M. Won, Nano calcium carbonate (CaCO3) as a reliable, durable, and environment-friendly alternative to diminishing Fly Ash, Materials. 14 (13) (2021a), pp. 3729. MDPI AG. 10.3390/ma14133729.
  • D.P. Bentz, A. Ardani, T. Barrett, S.Z. Jones, D. Lootens, M.A. Peltz, T. Sato, P.E. Stutzman, J. Tanesi, and W.J. Weiss, Multi-scale investigation of the performance of limestone in concrete, Constr. Building Materials 75 (2014), pp. 1–10. doi:10.1016/j.conbuildmat.2014.10.042.
  • V. Bonavetti, V. Rahhal, and E. Irassar, Studies on the carboaluminate formation in limestone filler-blended cements, Cem. Concr. Research 31 (6) (2001), pp. 853–859. doi:10.1016/S0008-8846(01)00491-4.
  • T. Matschei, B. Lothenbach, and F.P. Glasser, The role of calcium carbonate in cement hydration, Cement and Concrete Research 37 (4) (2007), pp. 551–558. doi:10.1016/j.cemconres.2006.10.013.
  • M. Zajac, A. Rossberg, G. Le Saout, and B. Lothenbach, Influence of limestone and anhydrite on the hydration of Portland cements, Cement Concrete Composites 46 (2014), pp. 99–108. doi:10.1016/j.cemconcomp.2013.11.007.
  • S. Yeşilmen, Y. Al-Najjar, M.H. Balav, M. Şahmaran, G. Yıldırım, and M. Lachemi, Nano-modification to improve the ductility of cementitious composites, Cement Concrete Research 76 (2015), pp. 170–179. doi:10.1016/j.cemconres.2015.05.026.
  • G. Ali, M. Fall, and I. Alainachi, Time- and temperature dependence of rheological properties of cemented tailings backfill with sodium silicate, ASCE Journal of Materials in Civil Engineering 33 (3) (2021), pp. 04020498. doi:10.1061/(ASCE)MT.1943-5533.0003605.
  • H. Du, M. Steinacher, C. Borca, T. Huthwelker, A. Murello, F. Stellacci, and E. Amstad, Amorphous CaCO 3: Influence of the Formation Time on Its Degree of Hydration and Stability, J. Am. Chem. Soc. 140 (43) (2018), pp. 14289–14299. doi:10.1021/jacs.8b08298.
  • W. Li and M. Fall, Sulphate effect on the early age strength and self-desiccation of cemented paste backfill, Constr. Build. Mater. 106 (2016), pp. 296–304. doi:10.1016/j.conbuildmat.2015.12.124.
  • F. Rajabipour and J. Weiss, Electrical conductivity of drying cement paste, Materials and Structures 40 (10) (2006), pp. 1143–1160. doi:10.1617/s11527-006-9211-z.
  • S. Haruna and M. Fall, Strength development of cemented tailings materials containing polycarboxylate ether-based superplasticizer: Experimental Results on the Effect of Time and Temperature, Canadian Journal of Civil Engineering 48 (4) (2020), pp. 429–442. doi:10.1139/cjce-2019-0809.
  • N. Sivakugan, K.J. Rankine, and K.S. Rankine, Geotechnical consideration in mine backfilling in Australia, J. Clean. Prod. 14 (12–13) (2005), pp. 1168–1175. doi:10.1016/j.jclepro.2004.06.007.
  • M. Fall and M. Benzaazoua, Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization, Cement and Concrete Research 35 (2) (2005), pp. 301–314. doi:10.1016/j.cemconres.2004.05.020.
  • M. Pokharel and M. Fall, Coupled thermochemical effects on the strength development of Slag-paste backfill materials, Journal of Materials in Civil Engineering 23 (5) (2011), pp. 511–525. doi:10.1061/(ASCE)MT.1943-5533.0000192.
  • M. Fall and M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, Cement and Concrete Composites 32 (10) (2010), pp. 819–828. doi:10.1016/j.cemconcomp.2010.08.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.