151
Views
0
CrossRef citations to date
0
Altmetric
Article

Human-induced changes and phyto-geomorphological relationships in the historical ravaneti landscape of the Carrara marble basin (Tuscany, Italy)

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 297-318 | Received 08 Jun 2022, Accepted 14 Feb 2023, Published online: 23 Feb 2023

References

  • E. Dolci, I marmi Lunensi: Tradizione, Produzione, Applicazioni. Centro Studi Lunensi, Quaderni. 11 (1985), pp. 405–463.
  • G. Bruschi, A. Criscuolo, W. Paribeni, and G. Zanchetta, 14C-dating from an old quarry waste dump of Carrara marble (Italy): Evidence of pre-roman exploitation, J. Cult. Herit. 5 (2004), pp. 3–6. doi:10.1016/j.culher.2003.09.007.
  • R. Gentili, S. Sgorbati, and C. Baroni, Plant species patterns and restoration perspectives in the highly disturbed environment of the Carrara marble quarries (Apuan Alps, Italy), Restor. Ecol. 19 (2011), pp. 32–42. doi:10.1111/j.1526-100X.2010.00712.x.
  • C. Baroni, G. Bruschi, and A. Ribolini, Human-induced hazardous debris flows in Carrara marble basins (Tuscany, Italy), Earth Surf. Process. Landforms 25 (2000), pp. 93–103. doi:10.1002/(SICI)1096-9837(200001)25:1<93:AID-ESP53>3.0.CO;2-0.
  • C. Baroni, P. Pieruccini, M. Bini, M. Coltorti, P.L. Fantozzi, G. Guidobaldi, D. Nannini, A. Ribolini, and M.C. Salvatore, Geomorphological and neotectonic map of the Apuan Alps (Tuscany, Italy), Geogr. Fis. e Din. Quat. 38 (2015), pp. 201–227. doi:10.4461/GFDQ.2015.38.17.
  • R. Gentili, S. Armiraglio, G. Rossi, S. Sgorbati, and C. Baroni, Floristic patterns, ecological gradients and biodiversity in the composite channels (Central Alps, Italy), Flora Morphol. Distrib. Funct. Ecol. Plants 205 (2010), pp. 388–398. doi:10.1016/j.flora.2009.12.013.
  • C. Baroni, A. Ribolini, G. Bruschi, and P. Mannucci, Geomorphological map and raised-relief model of the Carrara marble basins, Tuscany, Italy, Geogr. Fis. e Din. Quat. 33 (2010), pp. 233–243.
  • Confindustria Livorno-Massa-Carrara, Bilancio di sostenibilita' Settore Lapideo, 2018. https://www.confindustrialivornomassacarrara.it/
  • N. de Pencier, J. Baichwal, and E. Burtynsky, 2018. Anthropocene: the Human Epoch. Mercury Inc, Toronto.
  • A.C. Neri and L.E. Sánchez, A procedure to evaluate environmental rehabilitation in limestone quarries, J. Environ. Manage. 91 (2010), pp. 2225–2237. doi:10.1016/j.jenvman.2010.06.005.
  • C. Baroni, G. Bruschi, A. Criscuolo, G. Mandrone, and A. Ribolini, Complete grain-size analyses on debris-flow source area in the Carrara marble basins, Apuan Alps, Italy,in Debris flow hazards mitigation–mechanics, prediction, and assessment, C.-L. Chen and J.J. Major, eds., Millpress Science Publishers, Rotterdam, 2003, pp. 809–820.
  • R. Gentili, G. Bacchetta, G. Fenu, D. Cogoni, T. Abeli, G. Rossi, M.C. Salvatore, C. Baroni, and S. Citterio, From cold to warm-stage refugia for boreo-alpine plants in southern European and Mediterranean mountains: the last chance to survive or an opportunity for speciation?, Biodiversity 16 (2015), pp. 247–261. doi:10.1080/14888386.2015.1116407.
  • G.D. Gann, T. McDonald, B. Walder, J. Aronson, C.R. Nelson, J. Jonson, J.G. Hallett, C. Eisenberg, M.R. Guariguata, J. Liu, F. Hua, C. Echeverría, E. Gonzales, N. Shaw, K. Decleer, and K.W. Dixon, International principles and standards for the practice of ecological restoration, second edition, Restor. Ecol. 27 (2019), pp. S1–46. doi:10.1111/rec.13035.
  • D. Montoya, L. Rogers, and J. Memmott, Emerging perspectives in the restoration of biodiversity-based ecosystem services, Trends Ecol. Evol. (Amst.) 27 (2012), pp. 666–672. doi:10.1016/j.tree.2012.07.004.
  • K. Talento, M. Amado, and J.C. Kullberg, Quarries: From abandoned to renewed places, Land 9 (2020), pp. 1–21. doi:10.3390/land9050136.
  • M. Ballesteros, E.M. Cañadas, A. Foronda, E. Fernández-Ondoño, J. Peñas, and J. Lorite, Vegetation recovery of gypsum quarries: Short-term sowing response to different soil treatments, Appl. Veg. Sci. 15 (2012), pp. 187–197. doi:10.1111/j.1654-109X.2011.01166.x.
  • F. Gilardelli, S. Sgorbati, S. Armiraglio, S. Citterio, and R. Gentili, Assigning plant communities to a successional phase: Time trends in abandoned limestone quarries, Plant Biosyst. - an Int. J. Deal. with All Asp. Plant Biol. 150 (2016), pp. 799–808. doi:10.1080/11263504.2015.1011722.
  • M.J. Busnardo, C.D. McClain, K.M. Schott, M.B. Quinn, and M.J. Pollock, Techniques to restore coastal scrub at a reclaimed quarry in central California, Ecol. Restor. 35 (2017), pp. 354–361. doi:10.3368/er.35.4.354.
  • K. Prach and R.J. Hobbs, Spontaneous succession versus technical reclamation in the restoration of disturbed sites, Restor. Ecol. 16 (2008), pp. 363–366. doi:10.1111/j.1526-100X.2008.00412.x.
  • K. Prach, K. Lencová, K. Řehounková, H. Dvořáková, A. Jírová, P. Konvalinková, O. Mudrák, J. Novák, and R. Trnková, Spontaneous vegetation succession at different central European mining sites: A comparison across seres, Environ. Sci. Pollut. Res. 20 (2013), pp. 7680–7685. doi:10.1007/s11356-013-1563-7.
  • K. Prach, L. Šebelíková, K. Řehounková, and R. Del Moral, Possibilities and limitations of passive restoration of heavily disturbed sites, Landsc. Res. 45 (2020), pp. 247–253. doi:10.1080/01426397.2019.1593335.
  • R. Tropek, T. Kadlec, P. Karesova, L. Spitzer, P. Kocarek, I. Malenovsky, P. Banar, I.H. Tuf, M. Hejda, and M. Konvicka, Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants, J. Appl. Ecol. 47 (2010), pp. 139–147. doi:10.1111/j.1365-2664.2009.01746.x.
  • K. Prach, K. Řehounková, K. Lencová, A. Jírová, P. Konvalinková, O. Mudrák, V. Študent, Z. Vaněček, L. Tichý, P. Petřík, P. Šmilauer, and P. Pyšek, Vegetation succession in restoration of disturbed sites in central Europe: The direction of succession and species richness across 19 seres, Appl. Veg. Sci. 17 (2014), pp. 193–200. doi:10.1111/avsc.12064.
  • L. Carmignani and R. Kligfield, Crustal extension in the northern Apennines: the transition from compression to extension in the Alpi Apuane core complex, Tectonics 9 (1990), pp. 1275–1303. doi:10.1029/TC009i006p01275.
  • L. Carmignani, P. Conti, M. Meccheri, and G. Molli, Geology of the Alpi Apuane metamorphic complex (Alpi Apuane, Central Italy), Congress Fieldtrip Guidebook. 5(2004), pp. 1–36.
  • F. Rapetti and S. Vittorini, Carta Climatica Della Toscana Centro-Settentrionale (1: 250,000), Pisa, Italy: Pacini Editore, 1994.
  • P. Quézel and F. Médail, Que Faut-Il Entendre Par Forets Méditerranéennes? Forêt méditerranéennet 1 (2003), pp. 11–31.
  • M. Tomaselli, The vegetation of summit rock faces, talus slopes and grassland in the northern Apennines (N Italy), Fitosociologia 26 (1994), pp. 35–50.
  • R. Vaira, M. Ansaldi, G. Bedini, and F. Garbari, Demografia, Distribuzione e Aspetti Conservazionistici Di Specie Minacciate Della Flora Apuana, Atti della Soc. Toscana di Sci. Nat. Mem. Ser. B 111 (2004), pp. 65–93.
  • R. Gentili, S. Armiraglio, S. Sgorbati, and C. Baroni, Geomorphological disturbance affects ecological driving forces and plant turnover along an altitudinal stress gradient on alpine slopes, Plant Ecol. 214 (2013), pp. 571–586. doi:10.1007/s11258-013-0190-1.
  • J. Braun-Blanquet, Pflanzensoziologie, Vienna: Springer, 1964.
  • H. Ellenberg, Zeigerwerte Der Gefäßpflanzen Mitteleuropas.Indicator Values of Vascular Plants in Central Europe, 9th ed., Göttingen, Germany: Goltze, 1974.
  • S. Pignatti, P. Menegoni, and S. Pietrosanti, Bioindicazione attraverso le piante vascolari. valori di indicazione secondo Ellenberg per le specie della flora d’Italia, Braun-Blanquetia 39 (2005), pp. 3–95.
  • P. Smilauer and J. Lepš, Multivariate Analysis of Ecological Data Using CANOCO 5, Cambridge University Press, Cambridge, 2014.
  • R Core Team R: A Language and Environment for Statistical Computing. R foundation for statistical computing (2021), Vienna, Austria. available at https://www.R-project.org/.
  • D. Bates, M. Mächler, B. Bolker, and S. Walker, Fitting linear mixed-effects models using Lme4, J. Stat. Softw. 67 (2015), pp. 1–48. doi:10.18637/jss.v067.i01.
  • F. Gilardelli, S. Sgorbati, S. Armiraglio, S. Citterio, and R. Gentili, Ecological filtering and plant traits variation across quarry geomorphological surfaces: Implication for restoration, Environ. Manage. 55 (2015), pp. 1147–1159. doi:10.1007/s00267-015-0450-z.
  • R. Gentili, E. Casati, A. Ferrario, A. Monti, C. Montagnani, S. Caronni, and S. Citterio, Vegetation cover and biodiversity levels are driven by backfilling material in quarry restoration, CATENA 195 (2020), pp. 104839. doi:10.1016/j.catena.2020.104839.
  • V.H. Durán Zuazo and C.R. Rodríguez Pleguezuelo, Soil-erosion and runoff prevention by plant covers, A Review, Agron. Sustain. Dev. 28 (2008), pp. 65–86. doi:10.1051/agro:2007062.
  • M. Moreno-de las Heras, J.M. Nicolau, and T. Espigares, Vegetation succession in reclaimed coal-mining slopes in a Mediterranean-dry environment, Ecol. Eng. 34 (2008), pp. 168–178. doi:10.1016/j.ecoleng.2008.07.017.
  • Y. Yang, D. Liu, H. Xiao, J. Chen, Y. Ding, D. Xia, Z. Xia, and W. Xu, Evaluating the effect of the ecological restoration of quarry slopes in Caidian District, Wuhan City, Sustainability 11 (2019), pp. 6624. doi:10.3390/su11236624.
  • N.K. Kokutse, A.G.T. Temgoua, and Z. Kavazović, Slope stability and vegetation: Conceptual and numerical investigation of mechanical effects, Ecol. Eng. 86 (2016), pp. 146–153. doi:10.1016/j.ecoleng.2015.11.005.
  • X. Wang, M. Zhang, Y. Ji, Z. Li, M. Li, and Y. Zhang, Temperature signals in tree-ring width and divergent growth of Korean pine response to recent climate warming in Northeast Asia, Trees - Struct. Funct. 31 (2017), pp. 415–427. doi:10.1007/s00468-015-1341-x.
  • M. Scotton and D. Andreatta, Anti-erosion rehabilitation: Effects of revegetation method and site traits on introduced and native plant cover and richness, Sci. Total Environ. 776 (2021), pp. 145915. doi:10.1016/j.scitotenv.2021.145915.
  • N. Hölzel, E. Buisson, and T. Dutoit, Species introduction - a major topic in vegetation restoration, Appl. Veg. Sci. 15 (2012), pp. 161–165. doi:10.1111/j.1654-109X.2012.01189.x.
  • R. Kiew, A. Ummul-Nazrah, P. Ong, K. Imin, A. Aliaa-Athirah, and A. Rafidah, Distribution and conservation implications of limestone plant species in felda chiku limestone flora, Kelantan, Malaysia, J. Trop. For. Sci. 31 (2019), pp. 19–36. doi:10.26525/jtfs2019.31.1.019036.
  • M. Scotton, Calcareous grassland restoration at a coarse quarry waste dump in the Italian Alps, Ecol. Eng. 117 (2018), pp. 174–181. doi:10.1016/j.ecoleng.2018.04.012.
  • A. Monty, A. Jorion, C. Pitz, C. Géron, and G. Mahy, Alien invasive plants in Belgian limestone quarries, Base (2019), pp. 160–164. doi:10.25518/1780-4507.17984.
  • P.A. Salgueiro, K. Prach, C. Branquinho, and A. Mira, Enhancing biodiversity and ecosystem services in quarry restoration – challenges, strategies, and practice, Restor. Ecol. 28 (2020), pp. 655–660. doi:10.1111/rec.13160.
  • J.F. Martín Duque, I. Zapico, N. Bugosh, M. Tejedor, F. Delgado, C. Martín-Moreno, and J.M. Nicolau, A somolinos quarry land stewardship history: From ancient and recent land degradation to sensitive geomorphic-ecological restoration and its monitoring, Ecol. Eng. 170 (2021), pp. 106359. doi:10.1016/j.ecoleng.2021.106359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.