171
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Soil community catabolic profiles for a semiarid reclaimed surface coalmine

, , , &
Pages 338-354 | Received 30 Jan 2022, Accepted 23 Feb 2023, Published online: 07 Mar 2023

References

  • M.G. Kibblewhite, K. Ritz, and M.J. Swift, Soil health in agricultural systems, Phil. Trans. R. Soc. Biol. Sci. 363 (1492) (2008), pp. 685–701. doi:10.1098/rstb.2007.2178.
  • P. Nannipieri, J. Ascher, M. Ceccherini, L. Landi, G. Pietramellara, and G. Renella, Microbial diversity and soil functions, Eur. J. Soil. Sci. 54 (4) (2003), pp. 655–670. doi:10.1046/j.1351-0754.2003.0556.x.
  • B.H. Ellert, M.J. Clapperton, and D.W. Anderson, An ecosystem perspective of soil quality, in Developments in Soil Science, E.G. Gregorich and M.R. Carter, eds., Vol. 25, Elsevier, Amsterdam, 1997, pp. 115–141.
  • J. Lehmann, D.A. Bossio, I. Kögel-Knabner, and M.C. Rillig, The concept and future prospects of soil health, Nat. Rev. Earth Environ 1 (10) (2020), pp. 544–553. doi:10.1038/s43017-020-0080-8.
  • J.W. Doran and M. Safley, Defining and assessing soil health and sustainable productivity, in Biological indicators of soil health, C. Pankhurst, B.M. Doube, and V.V.S.R. Gupta, eds., CAB International, New York, 1997, pp. 1–28.
  • C. Pankhurst, B.M. Doube, and V.V.S.R. Gupta, Biological indicators of soil health: synthesis, in Biological indicators of soil health CAB International, New York, 1997, pp. 419–435.
  • J.P. Schimel and S.M. Schaeffer, Microbial control over carbon cycling in soil. frontiers in microbiology, Front Microbiol 3 (2012), pp. 348. doi:10.3389/fmicb.2012.00348.
  • M.R. Carter and B.A. Stewart, Structure and Organic Matter Storage in Agricultural Soils Science, Lewis Publishers, CRC press, Boca Raton, FL, USA, 1996, pp. 477.
  • M. Saleem, J. Hu, and A. Jousset, More than the sum of its parts: Microbiome biodiversity as a driver of plant growth and soil health, Annu. Rev. Ecol. Evol. Syst. 50 (1) (2019), pp. 145–168. doi:10.1146/annurev-ecolsys-110617-062605.
  • A.C. Kennedy and R.I. Papendick, Microbial characteristics of soil quality, J. Soil Water Conserv. 50 (1995), pp. 243–248.
  • M. Schloter, P. Nannipieri, S.J. Sørensen, and J.D. van Elsas, Microbial indicators for soil quality, Biol. Fertil. Soils 54 (1) (2018), pp. 1–10. doi:10.1007/s00374-017-1248-3.
  • P. Marschner, D. Crowley, and C.H. Yang, Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type, Plant Soil 261 (1–2) (2004), pp. 199–208. doi:10.1023/B:PLSO.0000035569.80747.c5.
  • C. San Miguel, M. Dulinski, and R.L. Tate, Direct comparison of individual substrate utilization from a CLPP study: A new analysis for metabolic diversity data, Soil Biol. Biochem. 39 (8) (2007), pp. 1870–1877. doi:10.1016/j.soilbio.2007.01.039.
  • K.H. Söderberg, A. Probanza, A. Jumpponen, and E. Bååth, The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil–and cfu–plfa techniques, Appl. Soil Ecol. 25 (2) (2004), pp. 135–145. doi:10.1016/j.apsoil.2003.08.005.
  • A. Apostolakis, I. Schöning, B. Michalzik, V.H. Klaus, R.S. Boeddinghaus, E. Kandeler, S. Marhan, R. Bolliger, M. Fischer, D. Prati, and F. Hänsel, Drivers of soil respiration across a management intensity gradient in temperate grasslands under drought, Nutr. Cycling Agroecosyst. 124 (1) (2022), pp. 101–116. doi:10.1007/s10705-022-10224-2.
  • A.K. Bandick and R.P. Dick, Field management effects on soil enzyme activities, Soil Biol. Biochem. 31 (11) (1999), pp. 1471–1479. doi:10.1016/S0038-0717(99)00051-6.
  • W.R. Cookson, A.J. O’donnell, C.D. Grant, P.F. Grierson, and D.V. Murphy, Impact of ecosystem management on microbial community level physiological profiles of postmining forest rehabilitation, Microb. Ecol. 55 (2) (2008), pp. 321–332. doi:10.1007/s00248-007-9278-2.
  • B.P. Degens, L.A. Schipper, G.P. Sparling, and L.C. Duncan, Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance?, Soil Biol. Biochem. 33 (9) (2001), pp. 1143–1153. doi:10.1016/S0038-0717(01)00018-9.
  • A. Berard, T. Bouchet, G. Sevenier, A.L. Pablo, and R. Gros, Resilience of soil microbial communities impacted by severe drought and high temperature in the context of Mediterranean heat waves, Eur. J. Soil Biol. 47 (6) (2011), pp. 333–342. doi:10.1016/j.ejsobi.2011.08.004.
  • D.L. Mummey, P.D. Stahl, and J.S. Buyer, Soil microbiological properties 20 years after surface mine reclamation: Spatial analysis of reclaimed and undisturbed sites, Soil Biol. Biochem. 34 (11) (2002), pp. 1717–1725. doi:10.1016/S0038-0717(02)00158-X.
  • C. Nilsson, A.L. Aradottir, D. Hagen, G. Halldórsson, K. Høegh, R.J. Mitchell, K. Raulund-Rasmussen, K. Svavarsdóttir, A. Tolvanen, and S.D. Wilson, Evaluating the process of ecological restoration, Ecol. and Soc. 21 (1) (2016). doi:10.5751/ES-08289-210141
  • G.R. Toevs, J.J. Taylor, C.S. Spurrier, W.C. MacKinnon, and M.R. Bobo, Bureau of Land Management Assessment, Inventory, and Monitoring Strategy for Integrated Renewable Resources Management, Bureau of Land Management, National Operations Center, Denver, CO, 2011.
  • T. Sudarmadji and W. Hartati, The process of rehabilitation of mined forest lands toward degraded forest ecosystem recovery in Kalimantan, Indonesia, Biodiversitas J. Biol. Divers. 17 (1) (2016). doi:10.13057/biodiv/d170127
  • M.A. Arshad and S. Martin, Identifying critical limits for soil quality indicators in agro-ecosystems, Agric. Ecosyst. Environ. 88 (2) (2002), pp. 153–160. doi:10.1016/S0167-8809(01)00252-3.
  • MAFF. Towards Sustainable Agriculture: A Pilot Set of Indicators, MAFF Publications, Her Majesty’s Stationery Office, London, 2000.
  • J.A. Harris, Measurements of the soil microbial community for estimating the success of restoration, Eur. J. Soil Sci. 54 (4) (2003), pp. 801–808. doi:10.1046/j.1351-0754.2003.0559.x.
  • J.A. Harris, P. Birch, and K.C. Short, Changes in the microbial community during the construction and subsequent storage of soil stockpiles: A strategist theory interpretation, Restor. Ecol. 1 (2) (1993), pp. 88–100. doi:10.1111/j.1526-100X.1993.tb00014.x.
  • T. Nakamoto and S. Wakahara, Development of substrate induced respiration (sir) method combined with selective inhibition for estimating fungal and bacterial biomass in humic andosols, Plant Prod. Sci. 7 (1) (2004), pp. 70–76. doi:10.1626/pps.7.70.
  • C.D. Campbell, S.J. Chapman, C.M. Cameron, M.S. Davidson, and J.M. Potts, A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil, Appl. Environ. Microbiol. 69 (6) (2003), pp. 3593–3599. doi:10.1128/AEM.69.6.3593-3599.2003.
  • S.J. Chapman, C.D. Campbell, and R.R. Artz, Assessing CLPPs using MicroResp™: A comparison with Biolog and multi-SIR, J. Soils Sediments 7 (6) (2007), pp. 406–410. doi:10.1065/jss2007.10.259.
  • R.E. Creamer, D. Stone, P. Berry, and I. Kuiper, Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method, Appl. Soil Ecol. 97 (2016), pp. 36–43. doi:10.1016/j.apsoil.2015.08.004.
  • K. Kaufmann, S.J. Chapman, C.D. Campbell, H. Harms, and P. Höhener, Miniaturized test system for soil respiration induced by volatile pollutants, Environ. Pollut. 140 (2) (2006), pp. 269–278. doi:10.1016/j.envpol.2005.07.011.
  • B.M. Lalor, W.R. Cookson, and D.V. Murphy, Comparison of two methods that assess soil community level physiological profiles in a forest ecosystem, Soil Biol. Biochem. 39 (2) (2007), pp. 454–462. doi:10.1016/j.soilbio.2006.08.015.
  • S.R. Olsen, Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate, US Department of Agriculture, Washington DC, 1954.
  • A.L. Page, R.H. Miller, and D.R. Keeney, Methods of soil analysis. Part 2. Chemical and microbiological properties, in Agronomy, 2nd ed., Vol. 9, Soil Science Society of America, Madison, 1982, pp. 1159.
  • C.A. Black, Method of soil analysis part 2, Chem. Microbiol. Prop. 9 (1965), pp. 1387–1388.
  • A.E. Ludwick and J.O. Reuss, Guide to fertliser recomendations in Colorado, Colorado State University Cooperative Extension, Fort Collins, 1990.
  • U.S. Environmental Protection Agency. Methods for Chemical Analysis of Water and Wastes, U.S. Gov. Print. Office, Washington, D.C, 1979.
  • Burt, Rebecca, Soil Survey Laboratory Methods. Manual Soil Survey Investigations Report No. 42 Version 4.0, Soil Conservation Service, U.S.D.A, Lincoln, Nebraska, 1972.
  • L.J. Cihacek. Interpreting Soil Analysis. Cooperative Extension Service Guide a-126, Las CrucesNew Mexico State University, Publication Office, Las Cruces, 1983.
  • A. Oren and Y. Steinberger, Coping with artifacts induced by CaCO3–CO2–H2O equilibria in substrate utilization profiling of calcareous soils, Soil Biol. Biochem. 40 (10) (2008a), pp. 2569–2577. doi:10.1016/j.soilbio.2008.06.020.
  • M.J. Rowell, Colorimetric method for CO2 measurement in soils, Soil Biol. Biochem. 27 (3) (1995), pp. 373–375. doi:10.1016/0038-0717(94)00218-P.
  • C. Cameron, MicroResp™ Technical Manual—a Versatile Soil Respiration System, Macaulay Institute, Aberdeen, Scotland, UK, 2007.
  • J.P. Anderson and K.H. Domsch, A physiological method for the quantitative measurement of microbial biomass in soils, Soil Biol. Biochem. 10 (3) (1978), pp. 215–221. doi:10.1016/0038-0717(78)90099-8.
  • T.H. Anderson and A.K. Domsch, The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils, Soil Biol. Biochem. 25 (3) (1993), pp. 393–395. doi:10.1016/0038-0717(93)90140-7.
  • Ø. Hammer, D.A.T. Harper, and P.D. Ryan, Paleontological statistics software package for education and data analysis. Paleontologia Electronica 4 (1) (2001), pp. 9.
  • J. Belnap, The world at your feet: Desert biological soil crusts, Front Ecol Environ 1 (4) (2003), pp. 181–189. doi:10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2.
  • J.A. Acosta, A. Abbaspour, G.R. Martínez, S. Martínez-Martínez, R. Zornoza, M. Gabarrón, and A. Faz, Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic amendments: A five-year field case study, Chemosphere 204 (2018), pp. 71–78. doi:10.1016/j.chemosphere.2018.04.027.
  • N. Aliasgharzadeh, S.N. Rastin, H. Towfighi, and A. Alizadeh, Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil, Mycorrhiza 11 (3) (2001), pp. 119–122. doi:10.1007/s005720100113.
  • S. Mukhtar, S. Mehnaz, M.S. Mirza, and K.A. Malik, Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola stocksii and Atriplex amnicola) for production of hydrolytic enzymes, Braz. J. Microbiol. 50 (1) (2019), pp. 85–97. doi:10.1007/s42770-019-00044-y.
  • B. Weber, M. Bowker, Y. Zhang, and J. Belnap, Natural Recovery of Biological Soil Crusts After Disturbance, in Biological Soil Crusts: An Organizing Principle in Drylands, B. Weber, B. Büdel, J. Belnap, eds., Springe, Switzerland, 2016, pp. 499–523.
  • J. Yu, N. Glazer, and Y. Steinberger, Carbon utilization, microbial biomass, and respiration in biological soil crusts in the Negev Desert, Biol. Fertil. Soils 50 (2) (2014), pp. 285–293. doi:10.1007/s00374-013-0856-9.
  • N.C. Banning, B.M. Lalor, W.R. Cookson, A.H. Grigg, and D.V. Murphy, Analysis of soil microbial community level physiological profiles in native and post-mining rehabilitation forest: Which substrates discriminate?, Applied Soil Ecology. 56 (2012). pp. 27–34.
  • B.P. Degens and J.A. Harris, Development of a physiological approach to measuring the catabolic diversity of soil microbial communities, Soil Biol. Biochem. 29 (9–10) (1997), pp. 1309–1320. doi:10.1016/S0038-0717(97)00076-X.
  • K.H. Orwin, D.A. Wardle, and L.G. Greenfield, Ecological consequences of carbon substrate identity and diversity in a laboratory study, Ecology 87 (3) (2006), pp. 580–593. doi:10.1890/05-0383.
  • T.H. Jones, L.J. Thompson, J.H. Lawton, T.M. Bezemer, R.D. Bardgett, and T.M. Blackburn, Impacts of rising atmospheric CO2 on soil biota and processes in model terrestrial ecosystems, Science. 280 (1998). pp. : 441–443.
  • P.A. Van Hees, S.I. Vinogradoff, A.C. Edwards, D.L. Godbold, and D.L. Jones, Low molecular weight organic acid adsorption in forest soils: Effects on soil solution concentrations and biodegradation rates, Soil Biol. Biochem. 35 8 (2003), pp. 1015–1026
  • N. Liaud C Giniés, D. Navarro, N. Fabre, S. Crapart, I.H. Gimbert, A. Levasseur, S. Raouche, and J.C. Sigoillot, Exploring fungal biodiversity: Organic acid production by 66 strains of filamentous fungi, Fungal Biology and Biotechnology. 1 1 (2014), pp. 1–10
  • V. Gonzalez-Quiñones, N.C. Banning, R.J. Ballesta, and D.V. Murphy, Influence of cold storage on soil microbial community level physiological profiles and implications for soil quality monitoring, Soil Biol. Biochem. 41 (7) (2009), pp. 1574–1576. doi:10.1016/j.soilbio.2009.04.004.
  • M.C. Moscatelli, A. Lagomarsino, S. Marinari, P. De Angelis, and S. Grego, Soil microbial indices as bioindicators of environmental changes in a poplar plantation, Ecol. Indic. 5 (3) (2005), pp. 171–179. doi:10.1016/j.ecolind.2005.03.002.
  • T. Strecker, R.L. Barnard, P.A. Niklaus, M. Scherer-Lorenzen, A. Weigelt, S. Scheu, and N. Eisenhauer, Effects of plant diversity, functional group composition, and fertilization on soil microbial properties in experimental grassland, PLoS One. 10 5 (2015), pp. e0125678
  • J.L. Garland, Patterns of potential C source utilization by rhizosphere communities, Soil Biol. Biochem. 28 (2) (1996), pp. 223–230. doi:10.1016/0038-0717(95)00113-1.
  • L. Bujalský, S. Kaneda, P. Dvorščík, and J. Frouz, In situ soil respiration at reclaimed and unreclaimed post-mining sites: Responses to temperature and reclamation treatment, Ecol Eng. 68 (2014). pp. 53–59.
  • M. Treeby, H. Marschner, and V. Römheld, Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators, Plant Soil. 114 (1989). pp. 217–226.
  • K.J. Vessey, Benefits of inoculating legume crops with rhizobia in the northern Great Plains, Crop Management. 3 1 (2004), pp. 1–8
  • G. Garau, M. Silvetti, S. Deiana, P. Deiana, and P. Castaldi, Long-term influence of red mud on as mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil, J. Hazard. Mater. 185 (2–3) (2011), pp. 1241–1248. doi:10.1016/j.jhazmat.2010.10.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.