139
Views
0
CrossRef citations to date
0
Altmetric
Article

Comparing the accuracy of two approaches to account for internal dilution: A case study from a porphyry copper deposit

, , &
Pages 441-459 | Received 29 Dec 2022, Accepted 10 Mar 2023, Published online: 20 Mar 2023

References

  • M. Abzalov, Applied Mining Geology, Vol. 12, Switzerland: Springer, 2016.
  • A. Chiquini and C.V. Deutsch, Mineral resources evaluation with mining selectivity and information effect, Min. Metall Explor 37 (4) (2020), pp. 965–979. doi:10.1007/s42461-020-00229-2.
  • X. Emery and S.A. Séguret, Geostatistics for the Mining Industry, Florida: CRC Press, 2020.
  • I. Lipton, R. Gaze, J. Horton, and S. Khosrowshahi, Practical application of multiple indicator kriging and conditional simulation to recoverable resource estimation for the halley’s lateritic nickel deposit. Beyond Ordinary Kriging: Non-Linear Geostatistical Methods in Practice, in Proceedings of A 1 Day Symposium, Perth, 1998, pp. 88–105.
  • T.R. Câmara, R. Scheffer Leal, and R. de Lemos Peroni, Accounting for operational dilution by incorporating geological uncertainties in short-term mine planning, Dyna. (Medellin) 87 (213) (2020), pp. 178–183. doi:10.15446/dyna.v87n213.83661.
  • M.E. Rossi and C.V. Deutsch, Mineral Resource Estimation, Netherlands: Springer, 2014.
  • T.R. Câmara and R. de L Peroni, Quantifying dilution caused by execution efficiency, REM - Int. J. Eng. 69 (4) (2016), pp. 487–490. doi:10.1590/0370-44672014690006.
  • A.J. Sinclair and G.H. Blackwell, Applied Mineral Inventory Estimation, Cambridge: Cambridge University Press, 2002.
  • A.J. Sinclair, M.S. Nowak, and Z.A. Radlowski, Geostatistical estimation of dilution by barren dykes at snip gold mine and virginia porphyry Cu–Au deposit, in Proc. 24th Symp. on Application of computers and operations research to the minerals industry Montreal, Oct, 1993, pp. 438–444.
  • O. Asghari, Geostatistical simulation of dyke systems in Sungun porphyry copper deposit, Iran, J. Min. Environ. 6 (2015), pp. 1–10.
  • M. Maleki, N. Mery, S. Soltani-Mohammadi, F. Khorram, and X. Emery, Geological control for in-situ and recoverable resources assessment: A case study on Sarcheshmeh porphyry copper deposit, Iran, Ore Geol. Rev 150 (2022), pp. 105133. doi:10.1016/j.oregeorev.2022.105133.
  • T.R. Câmara, R.S. Leal, R. de L Peroni, and L.N. Capponi, Controlling operational dilution in open-pit mining, Min. Tech 128 (1) (2018), pp. 1–8. doi:10.1080/25726668.2018.1470275.
  • R. Suglo and S. Opoku, An assessment of dilution in sublevel caving at Kazansi Mine, Int. J. of Min. Miner. Eng. 4 (1) (2012), pp. 1–16. doi:10.1504/IJMME.2012.047996.
  • J. Szymanski, S.M. Nareetsile, and R.S. Suglo, Control of dilution using the modified creeping cone method at Selebi North Mine, Int. J. Min, Reclam. Environ. 22 (1) (2008), pp. 36–47. doi:http://dx.doi.org/10.1080/17480930701325095.
  • A.J. Sinclair, Z.A. Radlowski, and G.F. Raymond, Mineral inventory of a gold-bearing skarn, the nickel Plate Mine, in Hedley, British Columbia, in Geostatistics for the Next Century: An International Forum in Honour of Michel David’s Contribution to Geostatistics, Montreal, 1993, R. Dimitrakopoulos, ed., Springer, Netherlands, Dordrecht, 1994, pp. 64–72.
  • Y. van der Grijp and R.C.A. Minnitt, Application of direct sampling multi-point statistic and sequential gaussian simulation algorithms for modelling uncertainty in gold deposits, J. South Afr. Inst. Min. Metall 115 (1) (2015), pp. 73–85. doi:10.17159/2411-9717/2015/v115n1a8.
  • H. Talebi, O. Asghari, and X. Emery, Stochastic rock type modeling in a porphyry copper deposit and its application to copper grade evaluation, J. Geochem. Explor. 157 (2015), pp. 162–168. doi:10.1016/j.gexplo.2015.06.010.
  • H. Rezaee, O. Asghari, M. Koneshloo, and J.M. Ortiz, Multiple-point geostatistical simulation of dykes: Application at Sungun porphyry copper system, Iran, Stoch. Environ. Res. Risk Assess. 28 (7) (2014), pp. 1913–1927. doi:10.1007/s00477-014-0857-8.
  • Y. Dagasan, P. Renard, J. Straubhaar, O. Erten, and E. Topal, Pilot point optimization of mining boundaries for lateritic metal deposits: Finding the trade-off between dilution and ore loss, Nat. Resour. Res. 28 (1) (2019), pp. 153–171. doi:10.1007/s11053-018-9380-9.
  • I. Masoumi, G. Kamali, O. Asghari, and X. Emery, assessing the impact of geologic contact dilution in ore/waste classification in the Gol-Gohar Iron Ore Mine, Southeastern Iran, Minerals 10 (2020) (2020), pp. 336 10. doi:10.3390/min10040336.
  • X. Emery and K.E. González, Incorporating the uncertainty in geological boundaries into mineral resources evaluation, J. Geol. Soc. India 69 (2007), pp. 29–38.
  • P.E.C. Pereira, M.N. Rabelo, C.C. Ribeiro, and H.S. Diniz-Pinto, Geological modeling by an indicator kriging approach applied to a limestone deposit in indiara city-goiás, Rev. Esc. de Minas 70 (3) (2017), pp. 331–337. doi:10.1590/0370-44672016700113.
  • M. Armstrong, A. Galli, H. Beucher, G. Loc’h, D. Renard, and B. Doligez, Eschard R, and Geffroy F, Plurigaussian Simulations in Geosciences, Springer, Berlin Heidelberg, 2011.
  • X. Emery, Simulation of geological domains using the plurigaussian model: New developments and computer programs, Comput. Geosci 33 (9) (2007), pp. 1189–1201. doi:10.1016/j.cageo.2007.01.006.
  • J.H. Duke and P.J. Hanna, Geological interpretation for resource modelling and estimation, Monogr. Ser. - Aust. Inst. Min. Metall. 23 (2001), pp. 147–156.
  • M. Maleki, N. Madani, and E. Jélvez, Geostatistical algorithm selection for mineral resources assessment and its impact on open-pit production planning considering Metal grade boundary effect, Nat. Resour. Res. 30 (6) (2021), pp. 4079–4094. doi:10.1007/s11053-021-09928-z.
  • M. Berberian and G.C.P. King, Towards a paleogeography and tectonic evolution of Iran, Can. J. Earth Sci 18 (2) (2011), pp. 210–265. doi:https://doi.org/10.1139/e81-019.
  • M. Niazi, I. Asudeh, G. Ballard, J. Jackson, G. King, and D. McKenzie, The depth of seismicity in the Kermanshah region of the Zagros Mountains (Iran), Earth Planet. Sci. Lett. 40 (2) (1978), pp. 270–274. doi:10.1016/0012-821X(78)90097-3.
  • O. Asghari and A. Hezarkhani, Investigations of alteration zones based on fluid inclusion Microthermometry at Sungun Porphyry Copper Deposit, Iran, Bull. Miner. Res. Explor. 140 19–34 (2010).
  • A.A. Kamali, M. Moayyed, N. Amel, M.R. Hosseinzadeh, K. Mohammadiha, J.F. Santos and Brenna M, Post-Mineralization, Cogenetic Magmatism at the Sungun Cu-Mo Porphyry Deposit (Northwest Iran): Protracted melting and extraction in an arc system, Minerals 8 (2018) (2018), pp. 588 8. doi:10.3390/min8120588.
  • M. Aghazadeh, Petrogenesis and U-Pb age dating of intrusive bodies in the sar cheshmeh deposit, J. Geoscience 25 (2016), pp. 291–312.
  • A.A. Calagari, Thesis Title Geochemical, Stable Isotope, Noble Gas, and Fluid Inclusion Studies of Mineralization and Alteration at Sungun Porphyry Copper Deposit, East Azarbaidjan, Implications for genesis, Iran, 1997.
  • A.A. Kamali, M. Moayyed, N. Amel, F. Mohammad, M. Brenna, B.M. Saumur, and Santos Jf, Mineralogy, mineral chemistry and thermobarometry of post-mineralization dykes of the Sungun Cu–Mo porphyry deposit (Northwest Iran), Open Geosci. 12 (1) (2020), pp. 764–790. doi:10.1515/geo-2020-0009.
  • A. Hezarkhani, A.E. Williams-Jones, and C.H. Gammons, Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran, Miner. Depos. 34 (8) (1999), pp. 770–783. doi:10.1007/s001260050237.
  • M. Aghazadeh, Z. Hou, Z. Badrzadeh, and L. Zhou, Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U–Pb and molybdenite Re–Os geochronology, Ore Geol. Rev 70 (2015), pp. 385–406. doi:10.1016/j.oregeorev.2015.03.003.
  • B. Shafiei and J. Shahabpour, Geochemical aspects of molybdenum and precious metals distribution in the Sar Cheshmeh porphyry copper deposit, Iran, Miner. Depos. 47 (5) (2012), pp. 535–543. doi:10.1007/s00126-011-0393-0.
  • N. Madani and X. Emery, Simulation of geo-domains accounting for chronology and contact relationships: Application to the Río Blanco copper deposit, Stoch. Environ. Res. Risk Assess. 29 (8) (2015), pp. 2173–2191. doi:10.1007/s00477-014-0997-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.