695
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Engineering properties of fine-grained red mud

, , , , , & show all
Pages 399-418 | Received 07 Sep 2022, Accepted 23 Apr 2023, Published online: 17 May 2023

References

  • S. Azam and Q. Li, Tailings dam failures: A review of the last one hundred years, Geotechnical News 28 (2010), pp. 50–53.
  • ICOLD, Tailings Dams-Risk of Dangerous Occurrences-Lessons Learnt from Past Experiences, Commission Internationale des Grands Barrages, 2001.
  • L. Piciullo, E.B. Storrøsten, Z. Liu, F. Nadim, and S. Lacasse, A new look at the statistics of tailings dam failures, Eng. Geol. 303 (April) (2022), pp. 106657. doi:10.1016/j.enggeo.2022.106657.
  • N.G. Reddy, R.S. Nongmaithem, D. Basu, and B.H. Rao, Application of biopolymers for improving the strength characteristics of red mud waste, Environmental Geotechnics (2021), pp. 1–20. doi:10.1680/jenge.19.00018.
  • A. Carrera, M. Coop, and R. Lancellotta, Influence of grading on the mechanical behaviour of Stava tailings, Géotechnique 61 (11) (2011), pp. 935–946. doi:10.1680/geot.9.P.009.
  • L. Hu, H. Wu, L. Zhang, P. Zhang, and Q. Wen, Geotechnical properties of mine tailings, J. Mater. Civil Eng. 29 (2) (2017), pp. 04016220. doi:10.1061/(asce)mt.1943-5533.0001736.
  • S. Islam, A study on the mechanical behaviour of three different fine-grained mine tailings, Journal Of King Saud University - Engineering Sciences, Xxxx (2021), pp. 1–7. doi:10.1016/j.jksues.2021.04.001.
  • W. Li and M.R. Coop, Mechanical behaviour of panzhihua iron tailings, Can. Geotech. J. 56 (3) (2019), pp. 420–435. doi:10.1139/cgj-2018-0032.
  • W. Li, M.R. Coop, K. Senetakis, and F. Schnaid, The mechanics of a silt-sized gold tailing, Eng. Geol. 241 (May) (2018), pp. 97–108. doi:10.1016/j.enggeo.2018.05.014.
  • T. Newson, T. Dyer, C. Adam, and S. Sharp, Effect of structure on the geotechnical properties of bauxite residue, Journal Of Geotechnical And Geoenvironmental Engineering 132 (2) (2006), pp. 143–151. doi:10.1061/(ASCE)1090-0241(2006)132:2(143).
  • ] Y. Qiu Jason, & D.C. Sego, Laboratory properties of mine tailings, Can. Geotech. J. 38, 1 (2001), pp. 183–190. doi:10.1139/t00-082
  • B.P. Radhika, A. Krishnamoorthy, and A.U. Rao, A review on consolidation theories and its application, International Journal Of Geotechnical Engineering 14 (1) (2020), pp. 9–15. doi:10.1080/19386362.2017.1390899.
  • H. Yu, X. Zeng, and P.R. Michael, Geotechnical properties and flow behavior of coal refuse under static and impact loading, Journal Of Geotechnical And Geoenvironmental Engineering 145 (7) (2019), pp. 1–14. doi:10.1061/(asce)gt.1943-5606.0002038.
  • ] J. Bedin, F. Schnaid, A.V. da Fonseca, & L.M. de Costa Filho, Gold tailings liquefaction under critical state soil mechanics, Geotechnique. 62, 3 (2012), pp. 263–267. doi:10.1680/geot.10.P.037
  • ] N. Chang, G. Heymann, & C. Clayton, The effect of fabric on the behaviour of gold tailings, Geotechnique. 61, 3 (2011), pp. 187–197. doi:10.1680/geot.9.P.066
  • ] A.B. Fourie, & G. Papageorgiou, Defining an appropriate steady state line for Merriespruit gold tailings, Can. Geotech. J. 38, 4 (2001), pp. 695–706. doi:10.1139/t00-111
  • A.T. Özer and L.G. Bromwell, Stability assessment of an earth dam on silt/clay tailings foundation: A case study, Eng. Geol. 151 (2012), pp. 89–99. doi:10.1016/j.enggeo.2012.09.011.
  • F. Schnaid, J. Bedin, A.J.P. Viana da Fonseca, and L. de Moura Costa Filho, Stiffness and strength governing the static liquefaction of tailings, Journal Of Geotechnical And Geoenvironmental Engineering 139 (12) (2013), pp. 2136–2144. doi:10.1061/(asce)gt.1943-5606.0000924.
  • M.T. Zandarín, L.A. Oldecop, R. Rodríguez, and F. Zabala, The role of capillary water in the stability of tailing dams, Eng. Geol. 105 (1–2) (2009), pp. 108–118. doi:10.1016/j.enggeo.2008.12.003.
  • Q. Zhang, G. Yin, Z. Wei, X. Fan, W. Wang, and W. Nie, An experimental study of the mechanical features of layered structures in dam tailings from macroscopic and microscopic points of view, Eng. Geol. 195 (2015), pp. 142–154. doi:10.1016/j.enggeo.2015.05.031.
  • S. Alam, S.K. Das, and B.H. Rao, Characterization of coarse fraction of red mud as a civil engineering construction material, J. Clean. Prod. 168 (2017), pp. 679–691. doi:10.1016/j.jclepro.2017.08.210.
  • M. Gore. Geotechnical Characterization of Bauxite Residue (Red Mud), The University of Texas, Austin, 2015. (Issue March).
  • D. Rubinos, G. Spagnoli, and M.T. Barral, Assessment of bauxite refining residue (red mud) as a liner for waste disposal facilities, Int. J. Min. Reclam. Environ. 29 (6) (2015), pp. 433–452. doi:10.1080/17480930.2013.830906.
  • I.A. Okewale and H. Grobler, Mechanical and microstructural properties of iron tailings, Environmental Geotechnics (2022), pp. 1–12. doi:10.1680/jenge.22.00010.
  • ] J.A.H. Carraro, M. Prezzi, & R. Salgado, Shear strength and stiffness of sands containing plastic or nonplastic fines, Journal Of Geotechnical And Geoenvironmental Engineering. 135, 9 (2009), pp. 1167–1178. doi:10.1061/(asce)1090-0241(2009)135:9(1167)
  • T. Kasap, E. Yilmaz, N.U. Guner, and M. Sari, Recycling dam tailings as cemented mine backfill: mechanical and geotechnical properties, Advances In Materials Science And Engineering 2022 (2022), pp. 1–12. doi:https://doi.org/10.1155/2022/6993068.
  • T. Kasap, E. Yilmaz, and M. Sari, Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings, J. Environ. Manage. 314 (April) (2022), pp. 115034. doi:10.1016/j.jenvman.2022.115034.
  • ANCOLD. Guidelines on Tailings Dams — Planning, Design, Construction, Operation and Closure; Revision 1; Australian National Committee on Large Dams: Hobart, Australia, 2019
  • A.M. Geremew and E.K. Yanful, Dynamic properties and influence of clay mineralogy types on the cyclic strength of mine tailings, null 13 (4) (2013), pp. 441–453. doi:10.1061/(asce)gm.1943-5622.0000227.
  • M. James, M. Aubertin, D. Wijewickreme, and G.W. Wilson, A laboratory investigation of the dynamic properties of tailings, Can. Geotech. J. 48 (11) (2011), pp. 1587–1600. doi:10.1139/t11-060.
  • P.N. Psarropoulos and Y. Tsompanakis, Stability of tailings dams under static and seismic loading, Can. Geotech. J. 45 (5) (2008), pp. 663–675. doi:10.1139/T08-014.
  • ] G. Suazo, A. Fourie, J. Doherty, & A. Hasan, Effects of confining stress, density and initial static shear stress on the cyclic shear response of fine-grained unclassified tailings, Geotechnique. 66, 5 (2016), pp. 401–412. doi:10.1680/jgeot.15.P.032
  • L. Vergaray, J. Macedo, and C. Arnold, Static and cyclic liquefaction of copper mine tailings, Journal Of Geotechnical And Geoenvironmental Engineering 149 (5) (2023), pp. 1–20. doi:10.1061/jggefk.gteng-10661.
  • D. Wijewickreme, M.V. Sanin, and G.R. Greenaway, Cyclic shear response of fine-grained mine tailings, Can. Geotech. J. 42 (5) (2005), pp. 1408–1421. doi:10.1139/t05-058.
  • ] D. Reid, R. Fanni, K. Koh, & I. Orea, Characterisation of a subaqueously deposited silt iron ore tailings, Geotechnique Letters. 8, 4 (2018), pp. 278–283. doi:10.1680/jgele.18.00105
  • G.A. Riveros and A. Sadrekarimi, Static liquefaction behaviour of gold mine tailings, Can. Geotech. J. 58 (6) (2021), pp. 889–901. doi:10.1139/cgj-2020-0209.
  • P.K. Robertson, L. de Melo, D.J. Williams, and G.W. Wilson, Report of the expert panel on the technical causes of the failure of Feijão dam I, Commissioned By Vale (2019), pp. 81.
  • G. Martin and M. Lew, Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction Hazards in California, Southern California Earthquake Center, University of Southern California, 1999. Available at http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Recommended+Procedures+for+Implementation+of+DMG+Special+Publication+117+Guidelines+for+Analyzing+and+Mitigating+Liquefaction+Hazards+in+California#0.
  • T.Q. Guo and S. Prakash, Liquefaction of Silts and Silt-Clay Mixtures, Journal Of Geotechnical And Geoenvironmental Engineering 5 (August) (1999), pp. 706–710. doi:10.1061/(ASCE)1090-0241(1999)125:8(706).
  • ] Z. Zhu, F. Zhang, J.C. Dupla, J. Canou, & E. Foerster, Investigation on the undrained shear strength of loose sand with added materials at various mean diameter ratios, Soil Dynamics And Earthquake Engineering. 137, July (2020), pp. 106276. doi:10.1016/j.soildyn.2020.106276
  • ASTM. 2023. ASTM D5550-23: Standard test methods for specific gravity of soil solids by water pycnometer. 10.1520/D0854-10
  • ASTM. 2021a. ASTM D6913/D6913M-7: Standard test methods for particle-size distribution (gradation) of soils using sieve. 10.1520/D6913
  • ASTM. 2021c. ASTM D7928-17: Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. 10.1520/D7928-21E01
  • ASTM. 2020a. ASTM D 2487-06: Standard practice for classification of soils for engineering purposes (unified soil classification system). 10.1520/D2487-17E01.2
  • ASTM. 2021b. ASTM D698-12 (Reapproved): Standard test methods for laboratory compaction characteristics of soil using standard effort. 10.1520/D0698-12R21
  • ASTM. 2020b. ASTM D2435-04: Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental loadng. Issue Reapproved. 10.1520/D2435
  • ASTM. 2020c. ASTM Designation: D4767-11: Standard test method for consolidated undrained triaxial compression test for. Issue Reapproved. 10.1520/D4767-11R20.2
  • A.W. Skempton, The pore-pressure coefficients a and B, Géotechnique 4 (4) (1954), pp. 143–147. doi:10.1680/geot.1954.4.4.143.
  • D.M.A.B. Lium, Biologically Induced Cementation for Soil Stabilisation, Issue June, Doctoral dissertation, Curtin University, 2019.
  • N. Kumari and C. Mohan, Basics of clay minerals and their characteristic properties, in Clay and Clay Minerals, IntechOpen, 2021, p. 13. doi:10.5772/intechopen.97672
  • N.V. Chukanov, M.F. Vigasina, N.V. Zubkova, I.V. Pekov, C. Schäfer, A.V. Kasatkin, V.O. Yapaskurt, and D.Y. Pushcharovsky, Extra-framework content in sodalite-group minerals: Complexity and new aspects of its study using infrared and Raman spectroscopy, Minerals 10 (4) (2020), pp. 363. doi:https://doi.org/10.3390/min10040363.
  • I. Hassan, Feldspathoids and their relationships to zeolites, Kuwait J.Sci.eng 24 (1997), pp. 163–183.
  • J.C. Santamarina, A. Klein, and M.A. Fam, Soils and waves: Particulate materials behavior, characterization and process monitoring. J. Soils Sediments. 1 (2) (2001), pp. 130–130.
  • J.K. Mitchell and K. Soga, Fundamentals of Soil Behavior, New York, John Wiley & Sons, 2005.
  • L.Y. Li and G.K. Rutherford, Effect of bauxite properties on the settling of red mud, Int. J. Miner. Process. 48 (3–4) (1996), pp. 169–182. doi:10.1016/S0301-7516(96)00024-5.
  • N.G. Reddy and B.H. Rao, Compaction and consolidation behaviour of untreated and treated waste of Indian red mud, Geotechnical Research 5 (2) (2018), pp. 106–121. doi:10.1680/jgere.18.00005.
  • M.S. Gore, R.B. Gilbert, I. McMillan, and S.L. Isovitsch Parks (2016). Geotechnical Characterization of compacted bauxite residue for use in levees. Proceedings of Geo-Chicago 2016, 299–310. 10.1061/9780784480137.030
  • Q. Chen, C. Zhang, C. Yang, C. Ma, Z. Pan, and J.J.K. Daemen, Strength and deformation of tailings with fine-grained interlayers, Eng. Geol. 256 (December 2018) (2019), pp. 110–120. doi:10.1016/j.enggeo.2019.04.007.
  • S.M. Junaideen, L.G. Tham, and C.F. Lee, Instability of compacted residual soil, Geosciences. 11 (10) (2021), pp. 403. Switzerland), 11(10. https://doi.org/10.3390/geosciences11100403.
  • ] J. Yang, & L.M. Wei, Collapse of loose sand with the addition of fines: The role of particle shape, Geotechnique. 62, 12 (2012), pp. 1111–1125. doi:10.1680/geot.11.P.062
  • A.W. Bishop 1967. Progressive failure - with special reference to the mechanism causing it. Proc. Geotechnical Conf, Oslo, Vol.2:142–150
  • R. Verdugo and K. Ishihara, The steady state of sandy soils, Soils Found. 36 (2) (1996), pp. 81–91. doi:10.3208/sandf.36.2_81.
  • ] J. Yang, & B.B. Dai, Is the quasi-steady state a real behaviour? a micromechanical perspective, Geotechnique. 61, 2 (2011), pp. 175–183. doi:10.1680/geot.8.P.129
  • T. Nakai, An isotropic hardening elastoplastic model for sand considering the stress path dependency in three-dimensional stresses, Soils Found. 29 (1) (1989), pp. 119–137. doi:10.3208/sandf1972.29.119.
  • M. Yoshimine and K. Ishihara, Flow potential of sand during liquefaction, Soils Found. 38 (3) (1998), pp. 189–198. doi:10.3208/sandf.38.3_189.
  • J.A. Yamamuro and K.M. Covert, Monotonic and cyclic liquefaction of very loose sands with high silt content, Journal Of Geotechnical And Geoenvironmental Engineering 127 (4) (2001), pp. 314–324. doi:10.1061/(ASCE)1090-0241(2001)127:4(314).
  • ] C.W.W. Ng, & A.C.F. Chiu, Laboratory study of loose saturated and unsaturated decomposed granitic soil, Journal Of Geotechnical And Geoenvironmental Engineering. 129, 6 (2003), pp. 550–559. doi:10.1061/(asce)1090-0241(2003)129:6(550)
  • G.J. Burton, J.A. Pineda, D. Sheng, and D. Airey, Microstructural changes of an undisturbed, reconstituted and compacted high plasticity clay subjected to wetting and drying, Eng. Geol. 193 (2015), pp. 363–373. doi:10.1016/j.enggeo.2015.05.010.
  • P. Delage, M. Audiguier, Y.-J. Cui, and M.D. Howat, Microstructure of a compacted silt, Can. Geotech. J. 33 (1) (1996), pp. 150–158. doi:10.1139/t96-030.
  • E. Romero, A. Gens, and A. Lloret, Water permeability, water retention and microstructure of unsaturated compacted Boom clay, Eng. Geol. 54 (1–2) (1999), pp. 117–127. doi:10.1016/S0013-7952(99)00067-8.
  • E. Romero, A microstructural insight into compacted clayey soils and their hydraulic properties, Eng. Geol. 165 (2013), pp. 3–19. doi:10.1016/j.enggeo.2013.05.024.
  • E. Romero and P.H. Simms, Microstructure investigation in unsaturated soils: A review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy, Geotechnical And Geological Engineering 26 (6) (2008), pp. 705–727. doi:10.1007/s10706-008-9204-5.
  • ] A. Tarantino, & E. De Col, Compaction behaviour of clay, Geotechnique. 58, 3 (2008), pp. 199–213. doi:10.1680/geot.2008.58.3.199
  • J. Zheng, Y. Tang, and H. Feng, Utilization of low-alkalinity binders in cemented paste backfill from sulphide-rich mine tailings, Constr. Build. Mater. 290 (2021), pp. 123221. doi:10.1016/j.conbuildmat.2021.123221.
  • ] P. Wang, & D.Y. Liu, Physical and chemical properties of sintering red mud and bayer red mud and the implications for beneficial utilization, Materials. 5, 10 (2012), pp. 1800–1810. doi:10.3390/ma5101800
  • K. Zabielska-Adamska, D. Małaszkiewicz, and M. Konopko (2019). Microstructure of compacted fly ash. Proceedings of 17th European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE 2019 - Proceedings, 2019, Septe, 1–8. 10.32075/17ECSMGE-2019-0465
  • ] V. Ferber, J.C. Auriol, Y.J. Cui, & J.P. Magnan, On the swelling potential of compacted high plasticity clays, Eng. Geol. 104, 3–4 (2009), pp. 200–210. doi:10.1016/j.enggeo.2008.10.008
  • ] T.S. Nagaraj, N.S. Pandian, & P.S.R. Narasimha Raju, Compressibility behaviour of soft cemented soils, Geotechnique. 48, 2 (1998), pp. 281–287. doi:10.1680/geot.1998.48.2.281
  • P.V. Lade and J.A. Yamamuro, Effects of nonplastic fines on static liquefaction of sands, Can. Geotech. J. 34 (6) (1997), pp. 918–928. doi:10.1139/t97-052.
  • M.P. Davies, Tailings impoundment failures are geotechnical engineers listening?, Waste Geotechnics 20 (2002), pp. 31–36.
  • ] X.S. Li, & Y.F. Dafalias, Dilatancy for cohesionless soils, Geotechnique. 50, 4 (2000), pp. 449–460. doi:10.1680/geot.2000.50.4.449
  • ] R. Rodríguez, A. Muñoz-Moreno, A. Vanessa Caparrós, C. García-García, Á. Brime-Barrios, J. César Arranz-González, V. Rodríguez-Gómez, F. Javier Fernández-Naranjo, & A. Alcolea, How to prevent flow failures in tailings dams, Mine Water And The Environment. 40, 1 (2021), pp. 83–112. doi:10.1007/s10230-021-00752-8
  • J.D. Bray and R.B. Sancio, Assessment of the Liquefaction Susceptibility of Fine-Grained Soils, Journal Of Geotechnical And Geoenvironmental Engineering 132 (9) (2006), pp. 1165–1177. doi:10.1061/(asce)1090-0241(2006)132:9(1165).
  • H.B. Seed and I.M. Idriss, Ground Motions and Soil Liquefaction During Earthquakes, EERI Monograph, Berkeley, Calif, 1982.
  • R.B. Seed, K. O. Cetin, R. E. Moss, A. M. Kammerer, J. Wu, J. M. Pestana, and A. Faris, Recent advances in soil liquefaction engineering: A unified and consistent framework, 26th Annual ASCE Los Angeles Geotechnical Spring Seminar, April 30, 2003, Queen Mary, Long Beach, California, (2003).
  • W. Wang, Some Findings in Soil Liquefaction, Water Conservancy and Hydroelectric Power Scientific Research Institute, Beijing, China: Water Conservancy and Hydroelectric Power Scientific Research Institute, 1979.
  • I.B. Gratchev, K. Sassa, and H. Fukuoka, How reliable is the plasticity index for estimating the liquefaction potential of clayey sands?, Journal Of Geotechnical And Geoenvironmental Engineering 132 (1) (2006), pp. 124–127. doi:10.1061/(asce)1090-0241(2006)132:1(124).
  • D.W. Breck and E.M. Flanigen, Molecular Sieves, Society of Chemical Industry, London, 1968, p. 47.
  • ] T. Kasap, E. Yilmaz, M. Sari, N.U. Guner, & M. Sari, Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings, Advances In Materials Science And Engineering. 2022, April (2022), pp. 115034. doi:10.1016/j.jenvman.2022.115034
  • P.S. Reddy, N.G. Reddy, V.Z. Serjun, B. Mohanty, S.K. Das, K.R. Reddy, and B.H. Rao, Properties and assessment of applications of red mud (bauxite residue): current status and research needs, Waste And Biomass Valorization 12 (3) (2021), pp. 1185–1217. doi:10.1007/s12649-020-01089-z.