205
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preliminary assessment of potential pollution risks in soils: case study of the Córrego do Feijão Mine dam failure (Brumadinho, Minas Gerais, Brazil)

, , , &
Pages 569-589 | Received 19 Mar 2023, Accepted 13 Jun 2023, Published online: 21 Jun 2023

References

  • R. Weng, G. Chen, X. Huang, F. Tian, L. Ni, L. Peng, D. Liao and B. Xi, Geochemical characteristics of tailings from typical metal mining areas in Tibet autonomous region, Miner. 12, 697 (2022), pp. 1–10. doi: 10.3390/min12060697.
  • E.J. Lam, I.L. Montofré, F.A. Álvarez, N.F. Gaete, D.A. Poblete, and R.J. Rojas, Methodology to prioritize Chilean tailings selection, according to their potential risks, Int. J. Environ. Res. Pub Health 17 (11) (2020), pp. 1–15. doi:10.3390/ijerph17113948.
  • A.S. Bailey, H.E. Jamieson, and A.B. Radková, Geochemical characterization of dust from arsenic-bearing tailings, Giant Mine, Canada, J. Appl. Geochem. 135 (2021), pp. 1–10. doi:10.1016/j.apgeochem.2021.105119.
  • E.S. Santos, M.C.F. Magalhães, M.M. Abreu, and F. Macías, Effects of organic/inorganic amendments on trace elements dispersion by leachates from sulfide-containing tailings of the São Domingos mine, Portugal, Time Evaluation. Geoderma. (2014) 226-227, pp. 188–203. doi:10.1016/j.geoderma.2014.02.004.
  • L. Rodríguez, B. González-Corrochano, M. Medina-Díaz, F.J. López-Bellido, F.J. Fernández-Morales, and J. Alonso-Azcárate, Does environmental risk really change in abandoned mining areas in the medium term when no control measures are taken?, Chemosphere 291 (2022), pp. 1–10. doi:10.1016/j.chemosphere.2021.133129.
  • M.N. Uugwanga and N.A. Kgabi, Assessment of metals pollution in sediments and tailings of Klein Aub and Oamites mine sites, Namibia, Environ. Adv 2 (2020), pp. 1–7. doi:10.1016/j.envadv.2020.100006.
  • A.S.M.F. Bari, D. Lamb, G. Choppala, B. Seshadri, M.R. Islam, P. Sanderson, and M.M. Rahman, Arsenic bioaccessibility and fractionation in abandoned mine soils from selected sites in New South Wales, Australia and human health risk assessment, Ecotox. Environ. Saf 223 (2021), pp. 1–10. doi:10.1016/j.ecoenv.2021.112611.
  • USEPA - United States Environmental Protection Agency, Abandoned mine site characterization and cleanup handbook, EPA 910-B-00-001, 2000.
  • R.A. Ferreira, M.F. Pereira, J.P. Magalhães, A.M. Maurício, I. Caçador, and S. Martins-Dias, Assessing local acid mine drainage impacts on natural regeneration-revegetation of São Domingos mine (Portugal) using a mineralogical, biochemical and textural approach, Sci. Total Environ. 755 (2021), pp. 1–16. doi:10.1016/j.scitotenv.2020.142825.
  • C.R. Cánovas, D. Caro-Moreno, F.A. Jiménez-Cantizano, F. Macías, and R. Pérez-López, Assessing the quality of potentially reclaimed mine soils: Environmental implications for the construction of a nearby water reservoir, Chemosphere 216 (2019), pp. 19–30. doi:10.1016/j.chemosphere.2018.09.018.
  • R. Nag, M.S. O´rourke, and E. Cummins, Cummins risk factors and assessment strategies for the evaluation of human or environmental risk from metal(loid)s - a focus on Ireland, Sci. Total Environ. 802 (2022), pp. 1–25. doi:10.1016/j.scitotenv.2021.149839.
  • C. Ding, J. Chen, F. Zhu, L. Chai, Z. Lin, K. Zhang, and Y. Shi, Biological toxicity of heavy metal(loid)s in natural environments: From microbes to humans, Front. Environ. Sci 1 (2022), pp. 1–23. doi:10.3389/fenvs.2022.920957.
  • ] J.E. Gall, R.S. Boyd, and N. Rajakaruna, Transfer of heavy metals through terrestrial food webs: A review, Environ. Monit. Assess. 187, 4 (2015), pp. 201–210. doi:10.1007/s10661-015-4436-3.
  • ] R. García-Giménez, R. Jiménez-Ballesta, Mine tailings influencing soil contamination by potentially toxic elements, Environ. Earth. Sci. 76, 51 (2017), pp. 1–12. doi:10.1007/s12665-016-6376-9.
  • L. Ma, T. Xiao, Z. Ning, Y. Liu, H. Chen, and J. Peng, Pollution and health risk assessment of toxic metal(loid)s in soils under different land use in sulphide mineralized areas, Sci. Total Environ. 724 (2020), pp. 138176. doi:10.1016/j.scitotenv.2020.138176.
  • ] T.W. Clarkson and L. Magos, The toxicology of mercury and its chemical compounds, Crit. Rev. Toxicol. 36, 8 (2006), pp. 609–662. doi:10.1080/10408440600845619.
  • A.C. Buch, G.G. Brown, M.E.F. Correia, and L.F. Lourençato. Silva-Filho Ecotoxicology of mercury in tropical forest soils: Impact on earthworms, Sci. Total Environ. 589 (2017a), 222–231. 10.1016/j.scitotenv.2017.02.150.
  • A.C. Buch, R.M. Schmelz, C.C. Niva, M.E.F. Correia, and E.V. Silva-Filho, Mercury critical concentrations to Enchytraeus crypticus (Annelida: Oligochaeta) under normal and extreme conditions of moisture in tropical soils - Reproduction and survival, Environ. Res. 155 (2017b), pp. 365–372. doi:10.1016/j.envres.2017.03.005
  • A.C. Buch, C.L.S. Sisinno, M.E.F. Correia, and E.V. Silva-Filho, Food preference and ecotoxicological tests with millipedes in litter contaminated with mercury, Sci. Total Environ. 633 (2018), pp. 1173–1182. doi:10.1016/j.scitotenv.2018.03.280.
  • M. Rico, G. Benito, and A. Díez-Herrero, Floods from tailings dam failures, J. Hazard. Mater. 154 (2008), pp. 79–87. doi:10.1016/j.jhazmat.2007.09.110.
  • A.C. Buch, K.D. Sautter, E.D. Marques, and E.V. Silva-Filho, Ecotoxicological assessment after the world’s largest tailing dam collapse (Fundão Dam, Mariana, Brazil): Effects on oribatid mites, Environ. Geochem. Health 42 (11) (2020), pp. 3575–3595. doi:https://doi.org/10.1007/s10653-020-00593-4.
  • ] M. Barbieri, A. Nigro, G. Sappa, Soil contamination evaluation by Enrichment Factor (EF) and Geoaccumulation Index (Igeo), Senses Sci. 2, 3 (2015), pp. 94–97. doi:10.14616/sands-2015-3-9497.
  • L. Huang, S. Rad, L. Xu, L. Gui, X. Song, Y. Li, Z. Wu, and Z. Chen, Heavy metal distribution, sources and ecological risk assessment in Huixian wetland, South China Water 12 (2) (2020), pp. 431–441. doi:10.3390/w12020431.
  • B.P. Ahirvar, P. Das, V. Srivastava, and M. Kumar, Perspectives of heavy metal pollution indices for soil, sediment, and water pollution evaluation: An insight, Total Environ. Res. Themes 6 (2023), pp. 1–15. doi:10.1016/j.totert.2023.100039.
  • USEPA - U.S. Environmental Protection Agency. Ground Water Issue - Behavior of Metals in Soils. EPA/540/S-92/018, October 1992. Technology innovation office of solid waste and emergency response, US EPA, Washington, DC 25
  • S. Liu, G. Pan, Y. Zhang, J. Xu, R. Ma, Z. Shen, and S. Dong, Risk assessment of soil heavy metals associated with land use variations in the riparian zones of a typical urban river gradient, Ecotox. Environ. Saf 181 (2019), pp. 435–444. doi:10.1016/j.ecoenv.2019.04.060.
  • L. Asanok, T. Kamyo, M. Norsaengsri, P. Salinla-Um, K. Rodrungruang, N. Karnausta, S. Navakam, S. Pattanakiat, D. Marod, P. Duengkae, and U. Kutintara, Vegetation community and factors that affect the woody species composition of riparian forests growing in an urbanizing landscape along the Chao Phraya River, central Thailand, Urban Urban Green 28 (2017), pp. 138–149. doi:10.1016/j.ufug.2017.10.013.
  • J. Zhang, P. Hua, and P. Krebs, Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment, Environ. Pollut. 228 (2017), pp. 158–168. doi:10.1016/j.envpol.2017.05.029.
  • CPRM - Companhia de Pesquisa de Recursos Minerais-Serviço Geológico do Brasil Superintendência Regional de Belo Horizonte, Monitoramento especial da bacia do Rio Paraopeba - Relatório 01: Monitoramento Hidrológico e Sedimentométrico. 2019. software available at http://www.cprm.gov.br/sace/conteudo/paraopeba/RT_01_2019_PARAOPEBA.pdf. (in Portuguese).
  • J. Aguilar, C. Dorronsoro, E. Fernández, J. Fernández, I. García, F. Martín, and M. Simon, Soil pollution by a pyrite mine spill in Spain: Evolution in time, Environ. Pollut. 132 (3) (2004), pp. 395–401. doi:10.1016/j.envpol.2004.05.028.
  • CPRM - Companhia de Pesquisa de Recursos Minerais-Serviço Geológico do Brasil Superintendência Regional de Belo Horizonte, Regionalização de vazões sub-bacias 40 e 41, convênio 015/2000. Relatório Final, Belo Horizonte. (in Portuguese). ANEEL – 013/CPRM/2000, 2001.
  • E.P. Viglio, F.G. Cunha, Atlas Geoquímico da Bacia do rio São Francisco, Belo Horizonte: CPRM-Serviço Geológico do Brasil. pp. 238. 2018.
  • CODEMIG - Companhia de Desenvolvimento Econômico de Minas Gerais. Portal da Geologia. 2019. June 10, 2022. (in Portuguese) software available at www.portalgeologia.com.br.
  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária, Manual de métodos de análise de solo, 2011. Centro Nacional de Pesquisa de Solos. Centro Nacional de Pesquisa de Solo (Rio de Janeiro, RJ). Segunda edição. Rio de Janeiro. in Portuguese.
  • USEPA - U.S. Environmental Protection Agency, Microwave assisted acid digestion of sediments, sludges, soils, and oils, Method. 3051, 2007. pp. 30.
  • USEPA - U.S. Environmental Protection Agency, Baseline human health risk assessment. Vasquez Boulevard and I-70 superfund site Denver, 2001.
  • USEPA - U.S. Environmental Protection Agency, Superfund public health evaluation, in Manual 540, Washington: EPA/540/1-86/060 (NTIS PB87183125), pp. 236. 1986.
  • A.L.W. Kemp and R.L. Thomas, Impact on man’s activities on the chemical composition in the sediments of Lake Ontario, Erie and Huron, Water Air Soil Poll. 5 (4) (1976), pp. 469–490. doi:10.1007/BF00280847.
  • A. Barakat, M.E. Baghdadi, J. Rais, and S. Nadem, Assessment of heavy metal in surface sediments of day river of Beni-Mellal region, Morocco, Res. J. Environ. Earth Sci 4 (2012), pp. 797–806.
  • Q. Li, J. Zhang, W. Ge, P. Sun, Y. Han, H. Qiu, and S. Zhou, Geochemical baseline establishment and source-oriented ecological risk assessment of heavy metals in lime concretion black soil from a typical agricultural area, International Journal Of Environmental Research 18 (13) (2021), pp. 1–16. doi:10.3390/ijerph18136859.
  • Z.B. Din, Use of aluminium to normalize heavy-metal data from estuarine and coastal sediments of straits of Melaka, Mar. Poll. Bull 24 (10) (1992), pp. 484–491. doi:10.1016/0025-326X(92)90472-I.
  • D.H. Loring, Normalization of heavy-metal data from estuarine and coastal sediments, ICESJ. mar. Sci 48 (1) (1991), pp. 101–115. doi:10.1093/icesjms/48.1.101.
  • X.-S. Wang and Y. Qin, Some characteristics of the distribution of heavy metals in urban topsoil of Xuzhou, China, Environ Geochem Health 29 (1) (2007), pp. 11–19. doi:10.1007/s10653-006-9052-2.
  • G. Müller, Index of geoaccumulation in sediments of the Rhine River, Geol. J. 2 (1969), pp. 108–118.
  • X. Qing, Z. Yutong, and L. Shenggao, Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan, Liaoning, Northeast China. Ecotox. Environ. Saf 120 (2015), pp. 377–385. doi:10.1016/j.ecoenv.2015.06.019.
  • L. Hakanson, An ecological risk index for aquatic pollution control.A sedimentological approach, Water Res. 14 (1980), pp. 975–1001. doi:10.1016/0043-1354(80)90143-8.
  • E.K.P. Bam, T.T. Akiti, S.D. Osea, S.Y. Ganyaglo, and A. Gibrilla, Multivariate cluster analysis of some major and trace elements distribution in an unsaturated zone profile, Densuriver Basin, Ghana, Afr. J. Environ. Sci. Technol 5 (2011), pp. 155–167.
  • D. Kossoff, W.E. Dubbin, M. Alfredsson, S.J. Edwards, M.G. Macklin, and H. Hudson-Edwards, Mine tailings dams: Characteristics, failure, environmental impacts, and remediation, Appl Geochem 51 (2014), pp. 229–246. doi:10.1016/j.apgeochem.2014.09.010.
  • M. Armstrong, R. Petter, and C. Petter, Why have so many tailings dams failed in recent years? Resour, Policy 63 (2019), pp. 1–10. doi:10.1016/j.resourpol.2019.101412.
  • K. Islam and S. Murakami, Global-scale impact analysis of mine tailings dam failures: 1915-2020, Global Environ. Change 70 (2021), pp. 1–10. doi:10.1016/j.gloenvcha.2021.102361.
  • Z. Xu, L. Ito, and L. dos Muchangos, Health risk assessment and cost–benefit analysis of agricultural soil remediation for tailing dam failure in Jinding mining area, SW China, Environ Geochem Health (2022). doi:10.1007/s10653-022-01445-z.
  • M. Marta-Almeida, R. Mendes, F.N. Amorin, M. Cirano, and J.M. Dias, Fundão dam collapse: Oceanic dispersion of River Doce after the greatest Brazilian environmental accident, Mar. Poll. Bull 112 (1–2) (2016), pp. 359–364. doi:10.1016/j.marpolbul.2016.07.039.
  • L.E.O. Gomes, L.B. Correa, F. Sá, R.R. Neto, and A.F. Bernardino, The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil, Mar. Poll. Bull 120 (1–2) (2017), pp. 28–36. doi:10.1016/j.marpolbul.2017.04.056.
  • M. Custodio, W. Cuadrado, R. Peñaloza, R. Montalvo, S. Ochoa, and J. Quispe, Human risk from exposure to heavy metals and arsenic in water from rivers with mining influence in the Central Andes of Peru, Water 12 (7) (2020), pp. 1–20. doi:https://doi.org/10.3390/w12071946.
  • C.S. Vergilio, D. Lacerda, B.C.V. Oliveira, E. Sartori, G.M. Campos, A.L.S. Pereira, D.B. Aguiar, T.S. Souza, M.G. Almeida, F. Thompson, and C.E. Rezende, Metal concentrations and biological effects from one of the largest mining disasters in the world (Brumadinho, Minas Gerais, Brazil), Sci. Reports 10 (1) (2020), pp. 1–10. doi:10.1038/s41598-020-62700-w.
  • L.S. Passos, K.G. Gnicchi, T.M. Pereira, G.C. Coppo, D.S. Cabral, and L.C. Gomes, Is the Doce River elutriate or its water toxic to Astyanax lacustris (Teleostei: Characidae) three years after the Samarco mining dam collapse?, Sci. Total Environ. 736 (20) (2020), pp. 1–10. doi:10.1016/j.scitotenv.2020.139644.
  • J. Hu, J. Liu, J. Li, X. Lu, L. Yu, K. Wu, and Y. Yang, Metal contamination, bioaccumulation, ROS generation, and epigenotoxicity influences on zebrafish exposed to river water polluted by mining activities, J. Hazard. Mater. 405 (2021), pp. 1–10. doi:10.1016/j.jhazmat.2020.124150.
  • H. Liu, A. Probst, and B. Liao, Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China), Sci Total Environ 339 (1–3) (2005), pp. 153–166. doi:10.1016/j.scitotenv.2004.07.030.
  • Z. Li, Z. Ma, T.J. van der Kuijp, Z. Yuan, and L. Huang, A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment, Sci. Total Environ. 486-469 (2014), pp. 843–853. doi:10.1016/j.scitotenv.2013.08.090.
  • R.B. Davila, M.P.F. Fontes, A.A. Pacheco, and M.S. da Ferreira, Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil, Sci. Total Environ. 709 (2020), pp. 1–10. doi:10.1016/j.scitotenv.2019.136151.
  • D. Siqueira, R. Cesar, R. Lourenço, A. Salomão, M. Marques, H. Polivanov, M. Teixeira, M. Vezzone, D. Santos, G. Koifman, Y. Fernandes, A.P. Rodrigues, K. Alexandre, M. Carneiro, L.C. Bertolino, N. Fernandes, L. Domingos, and Z.C. Castilhos, Terrestrial and aquatic ecotoxicity of iron ore tailings after the failure of VALE S.A mining dam in Brumadinho (Brazil), J. Geochem. Expl 235 (2022), pp. 1–16. doi:10.1016/j.gexplo.2022.106954.
  • M. Lemos, T. Valente, P.M. Reis, R. Fonseca, I. Delbem, J. Ventura, and M. Magalhães, Mineralogical and geochemical characterization of gold mining tailings and their potential to generate acid mine drainage (Minas Gerais, Brazil), Minerals 11 (39) (2021), pp. 1–16. doi:10.3390/min11010039.
  • J.L. Porsani, F.A.N. Jesus, and M.C. Stangari, GPR survey on an iron mining area after the collapse of the tailings dam I at the Córrego do Feijão Mine in Brumadinho-MG, Brazil, Remote Sens. 11 (7) (2019), pp. 860–870. doi:10.3390/rs11070860.
  • F.F. Alkmim and S. Marshak, Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil: Evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero, Precambrian Res 90 (1–2) (1998), pp. 29–58. doi:10.1016/S0301-9268(98)00032-1.
  • J. Viltus and M.S. Bonfim, Favorability mapping of hydrothermal vein-type lead deposits: A case study in Ribeira Valley, Brazil, Rev. Inst. Geol. São Paulo 39 (3) (2018), pp. 93–111. doi:10.33958/revig.v39i3.602.
  • A. de Carvalho Filho, A.V. Inda, J.R. Fink, and N. Curi, Iron oxides in soils of different lithological origins in Ferriferous Quadrilateral (Minas Gerais, Brazil), Appl Clay Sci 118 (2015), pp. 1–7. doi:10.1016/j.clay.2015.08.037.
  • L.A.R. de Carvalho Filho, C.A. Rosiere, F.J. Rios, S. Andrade, and R. de Moraes, Chemical fingerprint of iron oxides related to iron enrichment of banded iron formation from the Cauê Formation - Esperança Deposit, Quadrilátero Ferrífero, Brazil: A laser ablation ICP-MS study, Braz. J. Geol 45 (2) (2015b), pp. 193–216. doi:10.1590/23174889201500020003.
  • COPAM - Conselho Estadual de Política Ambiental (Minas Gerais-Brazil), Deliberação Normativa COPAM nº 166, de 29 de junho de 2011. 7 January 2022. (in Portuguese) software available at http://www.siam.mg.gov.br/sla/download.pdf?idNorma=18414.
  • CONAMA - Conselho Nacional do Meio Ambiente (Brazil), Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Resolução Conama n° 420, de 28 de dezembro de 2009 Brasília, DF. 28 December 2022. (in Portuguese). software available at http://www.mma.gov.br/port/conama/res/res09/res42009.pdf.
  • CCME - Canadian Council of Ministers of the Environment, Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (2007).
  • C. Carlon, Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization, European Commission, Joint Research Centre, Ispra EUR 22805-EN (2007), pp. 306 https://esdac.jrc. ec.europa.eu/ESDB_Archive/eusoils_docs/other/EUR22805.pdf.
  • B.A. Zarcinas, P. Pongsakul, M.J. Mclaughlin, and G. Cozens, Heavy metals in soils and crops in Southeast Asia 2, Thailand, Environ. Geochemi. Health 26 (3–4) (2004), pp. 359–371. doi:10.1007/s10653-005-4670-7.
  • MEF - Ministry of the Environment, Finland, Government Decree on the Assessment of Soil Contamination and Remediation Needs (214/2007, March 1), 2007.
  • G. Tóth, T. Hermann, M.R. Da Silva, and L. Montanarella, Heavy metals in agricultural soils of the European Union with implications for food safety, Environ Int 88 (2016), pp. 299–309. doi:10.1016/j.envint.2015.12.017.
  • CPRM - Companhia de Pesquisa de Recursos Minerais-Serviço Geológico do Brasil Superintendência Regional de Belo Horizonte, Monitoramento especial da bacia do Rio Paraopeba - Relatório 03: Monitoramento Geoquímico, 2019. (in Portuguese). software available at http://www.cprm.gov.br/sace/conteudo/paraopeba/RT_03_2019_PARAOPEBA.pdf.
  • H.E. Teramoto, H. Gemeiner, M.B.T. Zanatta, A.A. Menegário, and H.K. Chang, Metal speciation of the Paraopeba river after the Brumadinho dam failure, Sci. Total Environ. 757 (2021), pp. 1–17. doi:10.1016/j.scitotenv.2020.143917.
  • ] F. Thompson, B.C. de Oliveira, M.C. Cordeiro, B.P. Masi, T.P. Rangel, P. Paz, T. Freitas, G. Lopes, B.S. Silva, A.S. Cabral, M. Soares, D. Lacerda, C. Dos Santos Vergilio, M. Lopes-Ferreira, C. Lima, C. Thompson, C.E. de Rezende, Severe impacts of the Brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River, Sci. Total Environ. 25, 705 (2020), pp. 1–10. doi:10.1016/j.scitotenv.2019.135914
  • ] F.A.L. Pacheco, R.F. Valle Junior, M.M.A.P.M. de Silva, T.C.T. Pissara, M.C. de Melo, C.A. Valera, L.F.S. Fernandes, Prognosis of metal concentrations in sediments and water of Paraopeba River following the collapse of B1 tailings dam in Brumadinho (Minas Gerais, Brazil). Sci. Total Environ. 809, 25 (2022), pp. 1–10. doi:10.1016/j.scitotenv.2021.151157
  • A. Kabata-Pendias, Trace Elements in Soils and Plants, CRC Press, Taylor and Francis Group, 4th, 2011p. 534. 10.1201/b10158.
  • ] M. Grybos, M. Davranche, G. Gruau, P. Petitjean, Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?, J. Colloid Interface Sci. 314, 2 (2007), pp. 490–501. doi:10.1016/j.jcis.2007.04.062
  • T.P. Burt, G. Pinay, F.E. Matheson, N.E. Haycock, A. Butturini, J.C. Clement, S. Danielescu, D.J. Dowrick, M.M. Hefting, A. Hillbricht-Ilkowska, and V. Maitre, Water table fluctuations in the riparian zone: Comparative results from a pan-European experiment, J. Hydrol. 265 (1–4) (2002), pp. 129–148. doi:10.1016/S0022-1694(02)00102-6.
  • R. Zhong, Y. Zhang, X. Duan, F. Wang, and R. Anjum, Heavy metals enrichment associated with water-level fluctuations in the riparian soils of the Xiaowan Reservoir, Lancang River, International Journal Of Environmental Research 19 (19) (2022), pp. 12902. doi:10.3390/ijerph191912902.
  • V.M.C. Aguiar, A.C. Bastos, V.D.S. Quaresma, M.T.D. Orlando, F. Vedoato, A.S. Cavichini, and J.A.B. Neto, Trace metals distribution along sediment profiles from the Doce River Continental Shelf (DRCS) 3 years after the biggest environmental disaster in Brazil, the collapse of the Fundão Dam, Reg. Stud. Mar. Sci. 63 (2023), pp. 1–10. doi:10.1016/j.rsma.2023.103001.
  • C.‑. Huang, L.‑. Cai, Y.‑. Xu, L. Jie, L.‑. Chen, G.‑. Hu, H.‑. Jiang, X.‑. Xu, and J.‑. Mei, A comprehensive exploration on the health risk quantification assessment of soil potentially toxic elements from different sources around large‑scale smelting area, Environ. Monit. Assess. 13 (3) (2022), pp. 194–206. doi:10.1007/s10661-022-09804-0.
  • L.-M. Cai, Q.-S. Wang, H.-H. Wend, J. Luo, and S. Wang, Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution, Ecotox. Environ. Saf 168 (2019), pp. 184–191. doi:10.1016/j.ecoenv.2018.10.092.
  • A. Ordóñez, R. Álvarez, S. Charlesworth, E. De Miguel, and J. Loredo, Risk assessment of soils contaminated by mercury mining, Northern Spain, J Environ Monit 13 (1) (2011), pp. 128–136. doi:10.1039/c0em00132e.
  • K. Khosravi, M. Rostaminejad, J.R. Cooper, L. Mao, and A.M. Melesse, Chapter 31 - Dam break analysis and flood inundation mapping: The case study of Sefid-Roud Dam, Iran. Extreme hydrology and climate variability, Monitoring, Modelling, Adaptation And Mitigation 1 (2019), pp. 395–405. doi:10.1016/B978-0-12-815998-9.00031-2.
  • ] C.-C. Huang, L.-M. Cai, Y.-H. Xu, H.-H. Wen, L. Jie, G.-C. Hu, L.-G. Chen, H.-Z. Wang, X.-B. Xu, and J.-X. Mei, Quantitative analysis of ecological risk and human health risk of potentially toxic elements in farmland soil using the PMF model, Land Degrad. Dev. 33, 11 (2022), pp. 1954–1967. doi:10.1002/ldr.4277
  • A.C. Buch, J.C. Niemeyer, E.D. Marques, and E.V. Silva-Filho, Ecological risk assessment of trace metals in soils affected by mine tailings, J. Hazard. Mater. 403 (5) (2021), pp. 1–30. doi:10.1016/j.jhazmat.2020.123852.
  • A.C.C. Paulelli, C.A. Cesila, P.P. Devóz, S.R. de Oliveira, J.P.B. Ximenez, W.R. Pedreira Filho, and J.F. Barbosa, Fundão tailings dam failure in Brazil: Evidence of a population exposed to high levels of Al, As, Hg and Ni after a human biomonitoring study, Environ. Res. 205 (2022), pp. 1–8. doi:10.1016/j.envres.2021.112524.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.