195
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Required strength design of cemented backfill for underground metalliferous mine

ORCID Icon, , , , , , & show all
Pages 927-952 | Received 05 May 2023, Accepted 26 Jul 2023, Published online: 31 Jul 2023

References

  • M.K. Mishra and K.U.M. Rao, Geotechnical characterization of fly ash composites for backfilling mine voids Geotech, Geolog. Eng 24 (2006), pp. 1749–1765. doi:10.1007/s10706-006-6805-8.
  • S.K. Behera, D.P. Mishra, C.N. Ghosh, P. Singh, P.K. Mandal, K.M.P. Singh, J. Buragohain, and P.K. Singh, Characterization of lead–zinc mill tailings, fly ash and their mixtures for paste backfilling in underground metalliferous mines, Environ. Earth. Sci. 78, 394 (2019), doi: 10.1007/s12665-019-8395-9.
  • C. Qi, A. Fourie, Q. Chen, and Q. Zhang, A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J Clean Prod. 183 (2018), 566–578.
  • H. Zhang, S. Cao, and E. Yilmaz, Influence of 3D-printed polymer structures on dynamic splitting and crack propagation behaviour of cementitious tailings backfill, Constr. Build. Mater. 343(2022), 128137. doi: 10.1016/j.conbuildmat.2022.128137.
  • H. Niu, F.P. Hassani, M.F. Kermani, and M. He, Rheological and mechanical properties of fibre-reinforced cemented paste and foam backfill, Int. J. Min. Reclam. Environ. 35 (7) (2021), pp. 488–505. doi:10.1080/17480930.2021.1883217.
  • M.Z. Emad, H. Mitri, and C. Kelly, State-of-the-art review of backfill practices for sublevel stoping system, Int J Min Reclam Envi 29 (2015), pp. 544–556. doi:10.1080/17480930.2014.889363.
  • K. Mishra, P.S. Paul, C.N. Ghosh, P. Singh, S.K. Behera, and P.K. Mandal, Predicting and optimising the strength of cemented paste fills through Bayesian network model, Mining. Metall. Explor 39 (2022), pp. 2095–2120. doi:10.1007/s42461-022-00650-9.
  • R. Rankine, M. Pacheco, and N. Sivakugan, Underground Mining with backfills, Soils Rocks São Paulo 30 (2007), pp. 93–101. doi:10.28927/SR.302093.
  • X. Shi, H. Zhou, X. Sun, Z. Cao, and Q. Zhao, Floor damage mechanism with cemented paste backfill mining method, Arab. J. Geosci. 14 (2) (2021). doi: 10.1007/s12517-020-06368-6.
  • E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, and M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Constr. Build. Mater. 75 (2015), pp. 99–111. doi:10.1016/j.conbuildmat.2014.11.008.
  • C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management review and future perspectives, Miner. Eng. 144 (2019a) (2019), pp. 106025. doi:10.1016/j.mineng.2019.106025.
  • C. Qi and A. Fourie, Numerical investigation of the stress distribution in backfilled stopes considering creep behaviour of rock mass, Rock Mech. Rock Eng 52 (2019b) (2019), pp. 3353–3371. doi:10.1007/s00603-019-01781-0.
  • S.K. Behera, D.P. Mishra, P. Singh, K. Mishra, S.K. Mandal, C.N. Ghosh, R. Kumar, and P.K. Mandal, Utilization of mill tailings, fly ash and slag as mine paste backfill material: Review and future perspective, Constr. Build. Mater. 309 (2021), pp. 125120. doi:10.1016/j.conbuildmat.2021.125120.
  • E. Yilmaz, T. Belem, and M. Benzaazoua, Effects of curing and stress conditions on hydromechanical, geotechnical and geochemical properties of cemented paste backfill, Eng. Geol. 168 (2014), pp. 23–37. doi:10.1016/j.enggeo.2013.10.024.
  • S. Panchal, D. Debasis, and T. Sreenivas, Mill tailings based composites as paste backfill in mines of U-bearing dolomitic limestone ore, J. Rock Mech. Geotech. Eng. 10 (2018), pp. 310–322. doi:10.1016/j.jrmge.2017.08.004.
  • N. Huiya, F.P. Hassani, M.F. Kermani, and M. He, Rheological and mechanical properties of fibre-reinforced cemented paste and foam backfill, Int J Min Reclam Envi 35 (2021), pp. 488–505. doi:10.1080/17480930.2021.1883217.
  • C. Wang, M. Hu, X. Wang, and Y. Han, Experimental study on roadway backfill mining of paste-like material, Arab. J. Geosci. 14 (7) (2021). doi: 10.1007/s12517-021-06958-y
  • R.J. Mitchell, R.S. Olsen, and J.D. Smith, Model studies on cemented tailings used in mine backfill, Can. Geotech. J. 19 (1) (1982), pp. 14–28. doi:10.1139/t82-002.
  • L. Li and M. Aubertin, A modified solution to assess the required strength of exposed backfill in mine stopes, Can. Geotech. J. 49 (8) (2012), pp. 994–1002. doi:10.1139/t2012-056.
  • L. Li, Analytical solution for determining the required strength of a side-exposed mine backfill containing a plug, Can. Geotech. J. 51 (5) (2014), pp. 508–519. doi: 10.1139/cgj-2013-0227.
  • L. Li, Generalized solution for mining backfill design, Int. J. Geomech. 14(2014b), doi:10.1061/(ASCE)GM.1943-5622.0000329.
  • G. Liu, L. Li, Y. Xiaocong, and L. Guo, Stability analyses of vertically exposed cemented backfill: A revisit to Mitchell’s physical model tests, Int. J. Min. Sci. Technol. 26 (6) (2016), pp. 1135–1144. doi:10.1016/j.ijmst.2016.09.024.
  • P. Yang, L. Li, and M. Aubertin, A new solution to assess the required strength of mine backfill with a vertical exposure, Int. J. Geomech. 17 (10) (2017). doi: 10.1061/(ASCE)GM.1943-5622.0000975.
  • G. Liu, L. Li, X. Yang, and L. Guo, Required strength estimation of a cemented backfill with the front wall exposed and back wall pressured, Int. J. Mech. Mater. Eng 9 (2018), pp. 1–20. doi:10.1504/IJMME.2018.091214.
  • L. Li and M. Aubertin, An improved method to assess the required strength of cemented backfill in underground stopes with an open face, Int. J. Min. Sci. Technol. 24 (2014), pp. 549–558. doi:10.1016/j.ijmst.2014.05.020.
  • Z. Yang, S. Zhai, Q. Gao, and M. Li, Stability analysis of large-scale stope using stage subsequent filling mining method in Sijiaying iron mine, J. Rock Mech. Geotech. Eng. 7 (2015), pp. 87–94. doi:10.1016/j.jrmge.2014.11.003.
  • L. Guo, G. Liu, and X.Y. And, Models of three-dimensional arching stress and strength requirement for the backfill in open stoping with subsequent backfill mining, Meitan Xuebao/J. China Coal Soc. 44 (2019), pp. 1391–1403. doi:10.13225/j.cnki.jccs.2019.6025.
  • M. Grabinsky, W. Bawden, and B. Thompson, Required plug strength for continuously poured cemented paste backfill in longhole stopes, Mining 1 (1) (2021), pp. 80–99. doi:10.3390/mining1010006.
  • C. Qi, L. Guo, Y. Wu, Q. Zhang, and Q. Chen, Stability evaluation of layered backfill considering filling interval, backfill strength and creep behavior, Minerals 12 (2) (2022), pp. 271. doi:10.3390/min12020271.
  • R. Wang and L. Li, Time-dependent stability analyses of side-exposed backfill considering creep of surrounding rock mass, Rock Mech. Rock Eng 55 (4) (2022), pp. 2255–2279. doi:10.1007/s00603-022-02776-0.
  • L. Cui and M. Fall, Mathematical modelling of cemented tailings backfill: A review, Int J Min Reclam Envi 33 (2019), pp. 389–408. doi:10.1080/17480930.2018.1453320.
  • P. Singh, C.N. Ghosh, S.K. Behera, K. Mishra, D. Kumar, J. Buragohain, and P.K. Mandal, Optimisation of binder alternative for cemented paste fill in underground metal mines, Arab. J. Geosci. 12 (15) (2019). doi:10.1007/s12517-019-4623-6.
  • E. Arioglu, Design aspects of cemented aggregate fill mixes for tungsten stoping operations, Int. J. Min. Sci. Technol. 1 (1984), pp. 209–214. doi:10.1016/S0167-9031(84)90414-6.
  • L.J. Chen and D. Jiao, A design procedure for cemented fill for open stoping operations, Int. J. Min. Sci. Technol. 12 (1991), pp. 333–343. doi:10.1016/0167-9031(91)91277-O.
  • S. Zou and N. Nadarajah, Optimizing Backfill Design for Ground Support and Cost saving, 41st US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association, Golden, Colorado, 2006.
  • A.P.E. Dirige, R.L. McNearny, and D.S. Thompson, The Effect of Stope Inclination and Wall Rock Roughness on Backfill Free Face Stability, 3rd Canada–US Rock Mechanics Symposium, Toronto, 2009.
  • M. Fahey, M. Helinski, and A. Fourie, Some aspects of the mechanics of arching in backfilled stopes, Can. Geotech. J. 46 (2009), pp. 1322–1336. doi:10.1139/T09-063.
  • N. Falaknaz, M. Aubertin, and L. Li, Evaluation of the stress state in two adjacent backfilled stopes within an elasto-plastic rock mass, Geotech. Geolog. Eng (2015a), pp. 1–24. doi:10.1007/s10706-015-9868-6.
  • L. Li, M. Aubertin, and T. Belem, Formulation of a three dimensional analytical solution to evaluate stress in backfilled vertical narrow openings, Can. Geotech. J. 42 (2005), pp. 1705–1717. doi:10.1139/t05-084.
  • L. Li, M. Aubertin, and T. Belem, Erratum formulation of a three dimensional analytical solution to evaluate stress in backfilled vertical narrow openings, Can. Geotech. J. 43 (2006), pp. 338–339. doi:10.1139/t06-017.
  • M. Helinski, M. Fahey, and A. Fourie, Coupled two-dimensional finite element modelling of mine backfilling with cemented tailings, Can. Geotech. J. 47 (2010), pp. 1187–1200. doi: 10.1139/T10-020.
  • L.J. Porathur, M. Jose, R. Bhattacharjee, and S. Tewari, Numerical modeling approach for design of water retaining dams in underground hard rock mines a case example, Arab. J. Geosci. 11 (2018). doi:10.1007/s12517-018-4097-y.
  • P. Page, L. Li, P. Yang, and R. Simon, Numerical investigation of the stability of a base-exposed sill mat made of cemented backfill, Int. J. Rock Mech. Min. Sci. 114 (2019), pp. 195–207. doi:10.1016/j.ijrmms.2018.10.008.
  • D. Deb and S. Jain, Compaction based analytical stress model for 3D inclined backfilled stopes, Int. J. Geomech 18 (2018), pp. 1–10. doi:10.1061/(ASCE)GM.1943-5622.0001112.
  • L. Li and M. Aubertin, A three-dimensional analysis of the total and effective stresses in submerged backfilled stopes, Geotech. Geolog. Eng 27 (2009), pp. 559–569. doi:10.1007/s10706-009-9257-0.
  • N. Falaknaz, M. Aubertin, and L. Li, Numerical analyses of the stress state in two neighboring stopes excavated and backfilled in sequence, Int. J. Geomech. 15 (6) (2015). doi:10.1061/(ASCE)GM.1943-5622.0000466.
  • A. Jahanbakhshzadeh, M. Aubertin, and L. Li, Analysis of the stress distribution in inclined backfilled stopes using closed-form solutions and numerical simulations, Geotech. Geolog. Eng 36 (2018), pp. 1011–1036. doi:10.1007/s10706-017-0371-0.
  • Itasca. Flac3D-Fast Lagrangian analysis of continua user’s guide. Minneapolis. Itasca Consulting Group, 2012; software available at https://www.itascacg.com/software/flac3d.
  • G. Liu, L. Li, X. Yang, and L. Guo, A numerical analysis of the stress distribution in backfilled stopes considering nonplanar interfaces between the backfill and rock walls, Int. J. Geotech. Eng 10 (3) (2016), pp. 271–282. doi:10.1080/19386362.2015.1132123.
  • G. Liu, L. Li, X. Yang, and L. Guo, Numerical analysis of stress distribution in backfilled stopes considering interfaces between the backfill and rock walls, Int. J. Geomech. 17 (2) (2017). doi:10.1061/(ASCE)GM.1943-5622.0000702.
  • K. Fang, J. Zhang, L. Cui, L. Ding, X. Xu, and W. Timms, Mathematical modelling and simulation for hydrating backfill body under cemented paste backfill/rock interface loading, Int J Min Reclam Envi 37 (2022), pp. 87–109. doi:10.1080/17480930.2022.2142423.
  • E.T. Brown and E. Hoek, Trends in relationships between measured in-situ stresses and depth, Int. J. Rock Mech. Min. Sci. 15 (4) (1978), pp. 211–215. doi:10.1016/0148-9062(78)91227-5.
  • P.R. Sheorey, A theory for in situ stresses in isotropic and transversely isotropic rock, Int. J. Rock Mech. Min. Sci. 31 (1994), pp. 23–34. doi:10.1016/0148-9062(94)92312-4.
  • P.R. Sheorey, M.G. Murali, and A. Sinha, Influence of elastic constants on the horizontal in situ stresses, Int. J. Rock Mech. Min. Sci. 38 (8) (2001), pp. 1211–1216. doi:10.1016/S1365-1609(01)00069-7.
  • S.K. Behera, C.N. Ghosh, D.P. Mishra, P. Singh, K. Mishra, J. Buragohain, and P.K. Mandal, Strength development and microstructural investigation of lead-zinc mill tailings based paste backfill with fly ash as alternative binder, Cem. Concr. Compos 109 (2020), pp. 103553. doi:10.1016/j.cemconcomp.2020.103553.
  • S.K. Behera, C.N. Ghosh, K. Mishra, D.P. Mishra, P. Singh, P.K. Mandal, J. Buragohain, and M.K. Sethi, Utilisation of lead–zinc mill tailings and slag as paste backfill materials, Environ. Earth. Sci. 79 (2020b). doi:10.1007/s12665-020-09132-x.
  • A. Jahanbakhshzadeh, M. Aubertin, and L. Li, A new analytical solution for the stress state in inclined backfilled mine stopes, Geotech. Geolog. Eng 35 (2017), pp. 1151–1167. doi:10.1007/s10706-017-0171-6.
  • S.K. Behera, D.P. Mishra, P. Singh, A. Godugu, K. Mishra, P.K. Mandal, S.K. Mandal, and A.K. Mishra, Tensile strength of cemented paste backfill for lead–zinc mill tailings: Lab and in situ scenarios, Arab. J. Geosci. 16, 451 (2023), doi:10.1007/s12517-023-11536-5.
  • S.K. Behera, P. Singh, D.P. Mishra, C.N. Ghosh, S. Verma, A. Mohanty, K. Mishra, P.K. Singh, and P.K. Singh, Slump test laboratory and numerical simulation based approach for consistency of mill tailings paste, Curr. Sci. 117 (2019b), pp. 235–241. doi:10.18520/cs/v117/i2/235-241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.