154
Views
1
CrossRef citations to date
0
Altmetric
Research Article

State analysis of the inclinometer tube for monitoring relative slippage between backfill and surrounding rock mass

, , , , &
Pages 856-883 | Received 18 Jun 2023, Accepted 04 Aug 2023, Published online: 13 Aug 2023

References

  • G. Xue, E. Yilmaz, G. Feng, and S. Cao, Analysis of tensile mechanical characteristics of fibre reinforced backfill through splitting tensile and three-point bending tests, Int. J. Min. Reclam. Environ. 36 (3) (2022), pp. 218–234. doi:10.1080/17480930.2021.2014693.
  • S. Yin, Z. Yan, X. Chen, R. Yan, D. Chen, and J. Chen, Mechanical properties of cemented tailings and waste-rock backfill (CTWB) materials: Laboratory tests and deep learning modeling, Constr. Build. Mater. 369 (2023), pp. 130610. doi:10.1016/j.conbuildmat.2023.130610.
  • W. Cai, Z. Chang, D. Zhang, X. Wang, W. Cao, and Y. Zhou, Roof filling control technology and application to mine roadway damage in small pit goaf, Int. J. Min. Sci. Technol. 29 (3) (2019), pp. 477–482. doi:10.1016/j.ijmst.2018.10.001.
  • S. Yin, Z. Yan, X. Chen, R. Yan, D. Chen, J. Chen, and G. Li, Active roof-contact: The future development of cemented paste backfill, Constr. Build. Mater. 370 (2023), pp. 130657. doi:10.1016/j.conbuildmat.2023.130657.
  • S. Yin, Y. Zhou, X. Chen, and G. Li, A new acoustic emission characteristic parameter can be utilized to evaluate the failure of cemented paste backfill and rock combination, Constr. Build. Mater. 392 (2023), pp. 132017. doi:10.1016/j.conbuildmat.2023.132017.
  • R.L. Veenstra, A Design Procedure for Determining the in situ Stresses of Early Age Cemented Paste Backfill, University of Toronto, Canada, 2013.
  • M.L. Walske, H. Mcwilliam, J. Doherty, and A. Fourie, Influence of curing temperature and stress conditions on mechanical properties of cementing paste backfill, Can. Geotech. J. 11 (1) (2016), pp. 148–161. doi:10.1139/cgj-2014-0502.
  • M. Helinski, M. Fahey, and A. Fourie, Behavior of Cemented Paste Backfill in Two Mine Stopes: Measurements and Modeling, J. Geotech. Geoenviron. Eng 137 (2) (2011), pp. 171–182. doi:10.1061/(ASCE)GT.1943-5606.0000418.
  • C. Liu, G. Sun, X. Liu, X. Yao, Y. Feng, C. Ma, Wang, Y, Construction of Filling Body Instability Failure Warning Model Under Single-Side Unloading Condition, Rock Mech. Rock Eng 55 (7) (2022), pp. 4257–4269. doi:10.1007/s00603-022-02864-1.
  • M. Zhong, P. Yang, and Y. Hu, Study of Instability Mechanism and Roof Caving Mode of Cementing Filling Stope: The Case Study of a Nonferrous Metal Mine in China, Adv. Civ. Eng 2022 (2022), pp. e1658021. doi:10.1155/2022/1658021.
  • K. Ding, F. Ma, J. Guo, H. Zhao, R. Lu, and F. Liu, Investigation of the Mechanism of Roof Caving in the Jinchuan Nickel Mine, China, Rock Mech. Rock Eng 51 (4) (2018), pp. 1215–1226. doi:10.1007/s00603-017-1374-0.
  • Y. Zhou, S. Yin, K. Zhao, L. Wang, and L. Liu, Understanding the static rate dependence of early fracture behavior of cemented paste backfill using digital image correlation and acoustic emission techniques, Eng. Fract. Mech. 283 (2023), pp. 109209. doi:10.1016/j.engfracmech.2023.109209.
  • H. Zhao, F. Ma, Y. Zhang, and J. Guo, Monitoring and mechanisms of ground deformation and ground fissures induced by cut-and-fill mining in the Jinchuan Mine 2, China, Environ. Earth Sci. 68 (7) (2013), pp. 1903–1911. doi:10.1007/s12665-012-1877-7.
  • G. Li, Y. Wan, J. Guo, F. Ma, H. Zhao, and Z. Li, A Case Study on Ground Subsidence and Backfill Deformation Induced by Multi-Stage Filling Mining in a Steeply Inclined Ore Body, Remote Sens. 14 (18) (2022), pp. 4555. doi:10.3390/rs14184555.
  • T. Zhao, Z. Fu, and G. Li, In situ investigation into fracture and subsidence of overburden strata for solid backfill mining, Arab. J. Geosci. 11 (14) (2018), pp. 398. doi:10.1007/s12517-018-3769-y.
  • B. Yan, W. Zhu, C. Hou, E. Yilmaz, and M. Saadat, Characterization of early age behavior of cemented paste backfill through the magnitude and frequency spectrum of ultrasonic P-wave, Constr. Build. Mater. 249 (2020), pp. 118733. doi:10.1016/j.conbuildmat.2020.118733.
  • B. Yan, W. Zhu, H. Chen, Y. Yu, and K. Guan, Effects of coupled sulphate and temperature on internal strain and strength evolution of cemented paste backfill at early age, Constr. Build. Mater. 230 (2020), pp. 116937. doi:10.1016/j.conbuildmat.2019.116937.
  • B. Yan, H. Jia, E. Yilmaz, X. Lai, P. Shan, and C. Hou, Numerical investigation of creeping rockmass interaction with hardening and shrinking cemented paste backfill, Constr. Build. Mater. 340 (2022), pp. 127639. doi:10.1016/j.conbuildmat.2022.127639.
  • C. Hou, W. Zhu, B. Xu, K. Guan, and L. Niu, Analytical and experimental study of cemented backfill and pillar interactions, Int. J. Geomech 19 (8) (2019), pp. 04019080. doi:10.1061/(ASCE)GM.1943-5622.0001441.
  • G. Külekçi and M. Çullu, Alternatif Atıkların Kullanımı ile Üretilen Polipropilen Lif Takviyeli Kompozitlerin Mekanik Özelliklerinin Araştırılması, J. Polytech 24 (3) (2021), pp. 1171–1180. doi:10.2339/politeknik.777832.
  • G. Külekçi, B. Erçikdi, and S.Aliyazicioğlu, Effect of waste brick as mineral admixture on the mechanical performance of cemented paste backfill, IOP Conf. Seri. Earth and Environ. Sci. 44 (2016), pp. 042039. doi:10.1088/1755-1315/44/4/042039.
  • J. Wu, H. Jing, Y. Gao, Q. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos. 127 (2022), pp. 104408. doi:10.1016/j.cemconcomp.2022.104408.
  • Y. Li, W. Guo, H. Zhang, and Z. Wei, The Application of Combined GPS.RTK with Electronic Level on High-Precision Surface Monitoring, Adv. Mater. Res 718–720 (2013), pp. 1191–1194. doi:10.4028/www.scientific.net/AMR.718-720.1191.
  • Y. Chen, J. Li, H. Li, Y. Gao, S. Li, S. Chen, Guo, G., Wang, F., Zhao, D., Zhang, K. and Li, P., Revealing Land Surface Deformation Over the Yineng Backfilling Mining Area, China, by Integrating Distributed Scatterer SAR Interferometry and a Mining Subsidence Model, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 16 (2023), pp. 3611–3634. doi:10.1109/JSTARS.2023.3250419.
  • H. Fan, Q. Xu, Z. Hu, and S. Du, Using temporarily coherent point interferometric synthetic aperture radar for land subsidence monitoring in a mining region of western China, J. Appl. Remote Sens. 11 (2) (2017), pp. 026003. doi:10.1117/1.JRS.11.026003.
  • S. Yu, X. Yang, K. Dong, L. Xie, X. Sun, and L. Guo, Space-time rule of the control action of filling body for the movement of surrounding rock in method of the delayed filling open stopping, Caikuang Yu Anquan Gongcheng Xuebao 31 (2014), pp. 430–434.
  • X. Li, Z. Xiong, Y. Sun, Y. Wang, R. Sun, and W. Zhu, Dynamic monitoring and optimization of technological parameters in thin coal seam filling mining, Meitan Kexue Jishu 48 (2020), pp. 37–41.
  • J. Hao, A. Chen, X. Li, H. Bian, Y. Shi, X. Wang, J. Zhao, and H. Liu, et al., A case study of pillar extraction techniques based on strip-filling and second-mining method, Front. Earth Sci. 10 (2022), pp. 1051245. doi:10.3389/feart.2022.1051245.
  • C. Liao, W. Luo, D. Cai, and M. Li, In situ measurement of rockfill dam settlement using fiber optic gyroscope monitoring system, J. Struct. Control Health Monit 29 (4) (2022), pp. e2917. doi:10.1002/stc.2917.
  • R.C.S.B. Allil, L.A.C. Lima, A.S. Allil, and M.M. Werneck, FBG-Based Inclinometer for Landslide Monitoring in Tailings Dams, IEEE Sensors J. 21 (15) (2021), pp. 16670–16680. doi:10.1109/JSEN.2021.3081025.
  • C. Zhang, S. Zhang, and J. Cao, In-placefiber-optic inclinometer based on a vertical cantilever beam and dual FBGs, Opt. Laser Technol. 159 (2023), pp. 108933. doi:10.1016/j.optlastec.2022.108933.
  • Y.-Q. Wang, S.-B. Zhang, L.-L. Chen, Y.-L. Xie, and Z.-F. Wang, Field monitoring on deformation of high rock slope during highway construction: A case study in Wenzhou, China, Int. J. Distrib. Sens. Netw 15 (12) (2019), pp. 1550147719895953. doi:10.1177/1550147719895953.
  • V. Bennett, T. Abdoun, and M. Barendse, Evaluation of Soft Clay Field Consolidation Using MEMS-Based In-Place Inclinometer–Accelerometer Array, Geotech. Test. J. 38 (3) (2015), pp. 20140048–20140302. doi:10.1520/GTJ20140048.
  • D.W. Ha, J.M. Kim, Y. Kim, and H.S. Park, Development and application of a wireless MEMS-based borehole inclinometer for automated measurement of ground movement, Autom. Constr. 87 (2018), pp. 49–59. doi:10.1016/j.autcon.2017.12.011.
  • C. Di Maio, G. Fornaro, D. Gioia, D. Reale, M. Schiattarella, and R. Vassallo, In situ and satellite long-term monitoring of the Latronico landslide, Italy: Displacement evolution, damage to buildings, and effectiveness of remedial works, Eng. Geol. 245 (2018), pp. 218–235. doi:10.1016/j.enggeo.2018.08.017.
  • N.M. Newmark and W.J. Hall, Pipeline design to resist large fault displacement, Proceedings of US national conference on earthquake engineering, Earthquake Eng Res Inst, Ann Arbor, Michigan, America, 1975.
  • P. Kennedy Robert, A. Williamson Robert, and M. Chow Andrew, Fault Movement Effects on Buried Oil Pipeline, Transp. Eng. J. ASCE 103 (5) (1977), pp. 617–633. doi:10.1061/TPEJAN.0000659.
  • D.K. Karamitros, G.D. Bouckovalas, and G.P. Kouretzis, Stress analysis of buried steel pipelines at strike-slip fault crossings, Soil Dyn. Earthq. Eng. 27 (3) (2007), pp. 200–211. doi:10.1016/j.soildyn.2006.08.001.
  • B. Wang, X. Li, and J. Zhou, Strain analysis of buried steel pipelines across strike-slip faults, J. Cent. South Univ. Technol 18 (5) (2011), pp. 1654–1661. doi:10.1007/s11771-011-0885-1.
  • B. Wang, X. Li, and J. Zhou, An improved analytical method of buried steel pipeline response under strike-slip fault movement, Gongcheng Lixue 28 (2011), pp. 51–58.
  • B. Wang, Study on analytical methods of buried steel pipelines under active faults, Ph.D. diss, Dalian University of Technology, 2011.
  • American Lifeline Alliance. Guidelines for the Design of Buried Steel Pipe, American Society of Civil Engineers, Virginia, 2001.
  • P. Vazouras, P. Dakoulas, and S.A. Karamanos, Pipe–soil interaction and pipeline performance under strike–slip fault movements, Soil Dyn. Earthq. Eng. 72 (2015), pp. 48–65. doi:10.1016/j.soildyn.2015.01.014.
  • K.X. An, Study on the effect of pre-strain on 6063 aluminium alloy tensile mechanical properties, M.S. diss., Tianjing University, 2015.
  • J. Zhang, Y. Xiao, and Z. Liang, Mechanical behaviors and failure mechanisms of buried polyethylene pipes crossing active strike-slip faults, Compos. B. Eng 154 (2018), pp. 449–466. doi:10.1016/j.compositesb.2018.09.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.