69
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of curing humidity on the deformation and mechanical properties of cemented paste backfill

, , , &
Pages 904-926 | Received 30 May 2023, Accepted 21 Aug 2023, Published online: 05 Sep 2023

References

  • A.X. Wu, Y. Wang, and H.J. Wang, Status and prospects of the paste backfill Technology. Metal. Mine 45 (7) (2016), pp. 1–9.
  • J. Henriquez and P. Simms, Dynamic imaging and modelling of multilayer deposition of gold paste tailings, Min. Eng. 22 (2) (2009), pp. 128–139. doi:10.1016/j.mineng.2008.05.010.
  • C. Reid, V. Bécaert, M. Aubertin, R.K. Rosenbaum, and L. Deschênes, Life cycle assessment of mine tailings management in Canada, J. Clean. Prod. 17 (4) (2009), pp. 471–479. doi:10.1016/j.jclepro.2008.08.014.
  • H. Brett and C. Liang, Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review, Int. J. Miner. Metall. Mater. 30 (8) (2023), pp. 1474–1489. doi:10.1007/s12613-023-2640-7.
  • S. Coussy, M. Benzaazoua, and D. Blanc, Arsenic stability in arsenopyrite-rich cemented paste backfills: A leaching test-based assessment, J. Hazard. Mater. 185 (2) (2011), pp. 1467–1476. doi:10.1016/j.jhazmat.2010.10.070.
  • A.X. Wu, Y. Yang, and H.Y. Cheng, Status and prospects of paste technology in China, Chin. J. Eng. 40 (5) (2018), pp. 517–525.
  • C. LIang, S.S. Pramod, and G. Guanlong, Geomechanical behavior and properties of cemented paste backfill under passive interface loading and their influences on field-scale stability, Acta Geotech. 18 (7) (2023), pp. 3927–3945. doi:10.1007/s11440-023-01798-4.
  • J. Huazhe, Y. Wenbo, and Y. Liuhua, Relationship between compression and shear yield stress of metal mine tailing mortar, J. Chongqing Univ 45 (3) (2022), pp. 99–108.
  • J.L. Gao and J. Hou, Analysis of dangerous and harmful factors of tailings, J. North China Univ. Water Res. Electr. Power 32 (2) (2011), pp. 108–110.
  • X.L. Liang, Brief talk on environmental risk of tailings reservoir and countermeasures, Environ. Sci. Surv 30 (3) (2011), pp. 71–73.
  • F. Kun, Z. Jixiong, and C. LIang, Mathematical modelling and simulation for hydrating backfill body under cemented paste backfill/rock interface loading, Int. J. Min. Reclam. Environ. 37 (2) (2023), pp. 87–109. doi:10.1080/17480930.2022.2142423.
  • L.T. Zhang, Summary on the dam-break of tailing pond, J. Hydraul. Eng. 44 (5) (2013), pp. 594–600.
  • j. Zhao and J. Wang, Analysis of treatment and utilization approaches of solid waste from metal mines. Nonferrous Met. Eng. Res 28 (2) (2007), pp. 55–57.
  • Y.G. Chen and K.N. Zhang, Comprehensive treatment and application of solid waste of mines. Res. Environ Eng. 19 (4) (2005), pp. 311–313.
  • H.T. Ma, N.W. Liu, and Y.H. Wang, Review on research status of controlling techniques for goaf disaster in metal mine, J. Saf. Sci. Technol. 10 (10) (2014), pp. 75–80.
  • C. Liang and M. Aaron, Experimental study on evolutive fracture behavior and properties of sulfate-rich fiber-reinforced cemented paste backfill under pure mode-I, mode-II, and mode-III loadings, Int. J. Rock Mech. Min. Sci. 169 (2023), pp. 169. doi:10.1016/j.ijrmms.2023.105434.
  • K.X. Wang, M.Z. Du, and S.H. Zhou, Experimental simulation of the effect of wind speed on the humidity of wind flow at the end of a mine tunnel, Light Ind. Sci. Technol 34 (2) (2018), pp. 77–78.
  • B.C. Li, Harm of underground humidity. Saf. In Coal Mines 26 (9) (1985), pp. 37–40.
  • L.F. Li and Q. Zhou, Analysis of the influence of different inlet air parameters on downhole humidity, Sci. Technol 25 (31) (2015), pp. 53.
  • F.R. Zhou, Prediction and calculation method of airflow temperature and humidity. Saf. In Coal Mines 22 (5) (1981), pp. 48–53.
  • G. Halina, J.K. Stefan, and J.S. Macie, Moisture diffusivity in mortars of different water–cement ratios and in narrow ranges of air humidity changes, Int. J Heat Mass Trans. 56 (1–2) (2013), pp. 212–222. doi:10.1016/j.ijheatmasstransfer.2012.09.026.
  • M. Mazloom, A.A. Ramezanianpour, and J.J. Brooks, Effect of silica fume on mechanical properties of high-strength concrete, Cem. Concr. Compos. 26 (4) (2004), pp. 347–357. doi:10.1016/S0958-9465(03)00017-9.
  • E. Mona, R. Ashraf, and E.M.K. Mohamed, The role of relative humidity and cement type on carbonation resistance of concrete, Alex. Eng. J. 58 (4) (2019), pp. 1257–1264. doi:10.1016/j.aej.2019.10.008.
  • H.T. Zhao, K.D. Jiang, and R. Yang, Experimental and theoretical analysis on coupled effect of hydration, temperature and humidity in early-age cement-based materials, Int. J. Heat Mass Tran. 2020, pp.146 doi:10.1016/j.ijheatmasstransfer.2019.118784.
  • L. LI, R. Wang, and S. Zhang, Effect of curing temperature and relative humidity on the hydrates and porosity of calcium sulfoaluminate cement, Constr. Build. Mater. 213 (2019), pp. 627–636. doi:10.1016/j.conbuildmat.2019.04.044.
  • J.G. Han, Y.Z. Hu, and P.Y. Yan, Study on strength development of concrete under different humidity conditions, in New Technology and Engineering Application of Special Concrete & Asphalt Concrete, Leng, F.G. ed., Guangdong: China Building Materials Press, 2012, pp. 82–87.
  • C.D. Atiş, F. Özcan, A. Kiliç, O. Karahan, C. Bilim, M.H. Severcan, Influence of dry and wet curing conditions on compressive strength of silica fume concrete, Build. Environ. 40 (12) (2005), pp. 1678–1683. doi:10.1016/j.buildenv.2004.12.005.
  • X.Y. Guo, K.H. Fang, and F.G. Leng, Experimental study on effect of environment conditions on properties of HSC, J. Yangtze River Sci. Res. Inst 22 (2) 2005, pp.57–59+62.
  • Z.M. Ma, T.J. Zhao, and J.Z Chen, Experimental study on the influence of curing humidity on concrete durability, Eng. Constr 44 (6) (2012), pp. 4–6+47.
  • J.H. Hu, F.W. Zhao, and Q.F. Ren, Microscopic characterization and strength characteristics of cemented backfill under different humidity curing conditions, R. Soc. Open Sci. 6 (12) (2019), pp. 191227. doi:10.1098/rsos.191227.
  • D. Wu, R. Zhao, C. Xie, Effect of curing humidity on performance of cemented paste backfill.International, Int. J. Miner. Metall. Mater. 27 (8) (2020), pp. 1046–1053. doi:10.1007/s12613-020-1970-y.
  • W.Y. Xu, Y.K. Zhao, X.C. Yang, Coupled effect of curing temperature and moisture on THM behavior of cemented paste backfill, Adv. Civ. Eng. 2020 (2020), pp. 1–12. doi:10.1155/2020/1870952.
  • GB/T 50081, Standard for Test Method of Mechanical Properties on Ordinary Concrete. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2002.
  • GB/T 4934.1, Instrument for Soil Test—Shear Apparatus—Part 1:Strain-Controlled Direct Shear Apparatus, 2008.
  • ASTM C39/C39M-16, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, West Conshohocken, PA: ASTM Intermation, 2016.
  • Z.X. Liu, Mechanics of High Tailings Backfill and Nonlinear Optimal Design in Deep Mining[d], Changsha: Central South University, 2005.
  • WU Enqiao, Specific Energy Characteristics of Cemented Tailings Backfill of Damage and Fracture Under Uniaxial Compression, Wuhan: Wuhan University Of Science And Technology, 2005.
  • Z. Liu, M. Lan, S.Y. Xiao, Damage failure of cemented backfill and its reasonable match with rock mass, T. Nonferr. Metal. Soc. 25 (3) (2015), pp. 954–959. doi:10.1016/S1003-6326(15)63684-6.
  • Y. Wang, M. Fall, and A.X. Wu, Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate, Cem. Concr. Compos. 67 (2016), pp. 101–110. doi:10.1016/j.cemconcomp.2016.01.005.
  • A. Noumowe, Effet de hautes températures (20-600°C) sur le béton : cas particulier du béton a hautes performances, Lyon: Institut National des Sciences Appliquees,1995.
  • L.T. Phan, N.J. Carino, and D. Duthinh, International Workshop on Fire performance of high-strength concrete, Nist. Sp 919 (1997), pp. 1–179.
  • Q.Z.P. Glasser, Thermal stability and decomposition mechanisms of ettringite at <120 deg C, Cem. Concr. Res. 31 (9) (2001), pp. 1333–1339. doi:10.1016/S0008-8846(01)00558-0.
  • M. Fall, J.C. Celestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol 114 (3–4) (2010), pp. 397–413. doi:10.1016/j.enggeo.2010.05.016.
  • Q. Zhou and F.P. Glasser, Thermal stability and decomposition mechanisms of ettringite at <120°C, Cem. Concr. Res. 31 (9) (2001), pp. 1333–1339. doi:10.1016/S0008-8846(01)00558-0.
  • P.F. Li, X.F. Cao, and S.L. Tang, Experimental study on the performance of loess and aeolian sand filling materials for coal mine, J. Liaoning Tech. Univ 41 (6) (2022), pp. 503–510.
  • G.Z. Jiang, A.X. Wu, and Y.M. Wang, Curing performance of alkali-activated cement–phosphorous slag and its compatibility with sulfur tailings, Chin. J. Eng. 42 (8) (2020), pp. 963–971.
  • M. Fall, T. Belem, S. Samb, Experimental characterization of the stress–strain behaviour of cemented paste backfill in compression, J. Mater. Sci. 42 (11) (2007), pp. 3914–3922. doi:10.1007/s10853-006-0403-2.
  • Y. Dong, Z.Q. Yang, and Q. Gao, Strength forecasting of backfilling materials by BP neural network model collaborated with orthogonal experiment, Mater. Rep 32 (6) (2018), pp. 1032–1036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.