178
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Response surface methodology-based characterization and optimization of fibre reinforced cemented tailings backfill with Slag

& ORCID Icon
Pages 735-759 | Received 10 Jul 2023, Accepted 14 Sep 2023, Published online: 21 Sep 2023

References

  • ] A. Kesimal, E. Yilmaz, B. Ercikdi, I. Alp, and H. Deveci, Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill, Mater. Lett. 59, 28 (2005), pp. 3703–3709. doi:10.1016/j.matlet.2005.06.042
  • H. Eker and A. Bascetin, Influence of silica fume on mechanical property of cemented paste backfill, Constr. Build. Mater. 317 (2022), pp. 126089. 10.1016/j.conbuildmat.2021.126089.
  • ] A. Ghirian, and M. Fall, Strength evolution and deformation behavior of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage, Int. J. Min. Sci. Technol. 26, 5 (2016), pp. 809–817. doi:10.1016/j.ijmst.2016.05.039
  • J. Haiqiang, M. Fall, and L. Cui, Yield stress of cemented paste backfill in sub-zero environments: Experimental results, Miner. Eng. 92 (2016), pp. 141–150. 10.1016/j.mineng.2016.03.014.
  • Y. Wang, M. Fall, and A. Wu, Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate, Cem. Concr. Compos. 67 (2016), pp. 101–110. doi:10.1016/j.cemconcomp.2016.01.005.
  • M. Fall, J.C. Célestin, and F.S. Han, Suitability of bentonite-paste tailings mixtures as engineering barrier material for mine waste containment facilities, Miner. Eng. 22 (9–10) (2009b), pp. 840–848. doi:10.1016/j.mineng.2009.02.011.
  • ] D. Wu, M. Fall, and S.-J. Cai, Coupled modeling of temperature distribution and evolution in cemented tailings backfill structures that contain mineral admixtures, Geotech. Geol. Eng. 30, 4 (2012), pp. 935–961. doi:10.1007/s10706-012-9518-1
  • B. Yan, W. Zhu, C. Hou, Y. Yu, and K. Guan, Effects of coupled sulphate and temperature on internal strain and strength evolution of cemented paste backfill at early age, Constr. Build. Mater. 230 (2020), pp. 116937. doi:10.1016/j.conbuildmat.2019.116937.
  • E. Yilmaz, Stope depth effect on field behaviour and performance of cemented paste backfills, Int. J. Min. Reclam. Environ. 32 (4) (2018), pp. 273–296. doi:10.1080/17480930.2017.1285858.
  • S. Yin, Y. Shao, A. Wu, Z. Wang, and L. Yang, Assessment of expansion and strength properties of sulfidic cemented paste backfill cored from deep underground stopes, Constr. Build. Mater. 230 (2020), pp. 116983. 10.1016/j.conbuildmat.2019.116983.
  • M. Jafari, M. Shahsavari, and M. Grabinsky, Experimental study of the behavior of cemented paste backfill under high isotropic compression, J. Geotech. Geoenviron. Eng 146 (11) (2020), pp. 06020019. doi:10.1061/(ASCE)GT.1943-5606.0002383.
  • L. Cui and M. Fall, Modeling of pressure on retaining structures for underground fill mass, Tunn. Undergr. Space Technol. 69 (2017a), pp. 94–107. doi:10.1016/j.tust.2017.06.010.
  • ] L. Cui, and M. Fall, Multiphysics model for consolidation behavior of cemented paste backfill, Int. J. Geomech. 17, 3 (2017), pp. 04016077. doi:10.1061/(ASCE)GM.1943-5622.0000743
  • ] M. Fall, J.C. Célestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol. 114, 3–4 (2010), pp. 397–413. doi:10.1016/j.enggeo.2010.05.016
  • ] H. Niu, F.P. Hassani, M.F. Kermani, and M. He, Rheological and mechanical properties of fibre-reinforced cemented paste and foam backfill, Int. J. Min. Reclam. Environ. 35, 7 (2021), pp. 488–505. doi:10.1080/17480930.2021.1883217
  • Y. Wang, Z. Yu, and H. Wang, Experimental investigation on some performance of rubber fiber modified cemented paste backfill, Constr. Build. Mater. 271 (2021), pp. 121586. 10.1016/j.conbuildmat.2020.121586.
  • ] Z. Yu, Y. Wang, and J. Li, Performance investigation and cost–benefit analysis of recycled tire polymer fiber-reinforced cemented paste backfill, Polymers. 14, 4 (2022), pp. 708. doi:10.3390/polym14040708
  • ] X.W. Yi, G.W. Ma, and A. Fourie, Compressive behaviour of fibre-reinforced cemented paste backfill, Geotex. Geomem. 43, 3 (2015), pp. 207–215. doi:10.1016/j.geotexmem.2015.03.003
  • ] X.W. Yi, G.W. Ma, and A. Fourie, Centrifuge model studies on the stability of fibre-reinforced cemented paste backfill stopes, Geotex. Geomem. 46, 4 (2018), pp. 396–401. doi:10.1016/j.geotexmem.2018.03.004
  • X. Chen, X. Shi, J. Zhou, Q. Chen, E. Li, and X. Du, Compressive behavior and microstructural properties of tailings polypropylene fibre-reinforced cemented paste backfill, Constr. Build. Mater. 190 (2018), pp. 211–221. 10.1016/j.conbuildmat.2018.09.092.
  • ] L. Festugato, A. Fourie, and N.C. Consoli, Cyclic shear response of fibre-reinforced cemented paste backfill, Géotech. Let. 3, 1 (2013), pp. 5–12. doi:10.1680/geolett.12.00042
  • N. Zhou, E. Du, J. Zhang, C. Zhu, and H. Zhou, Mechanical properties improvement of sand-based cemented backfill body by adding glass fibers of different lengths and ratios, Constr. Build. Mater. 280 (2021), pp. 122408. 10.1016/j.conbuildmat.2021.122408.
  • W. Xu, Q. Li, and Y. Zhang, Influence of temperature on compressive strength, microstructure properties and failure pattern of fiber-reinforced cemented tailings backfill, Constr. Build. Mater. 222 (2019), pp. 776–785. 10.1016/j.conbuildmat.2019.06.203.
  • Z. Aldhafeeri, M. Fall, M. Pokharel, and Z. Pouramini, Temperature dependence of the reactivity of cemented paste backfill, Appl. Geochem. 72 (2016), pp. 10–19. 10.1016/j.apgeochem.2016.06.005.
  • A. Sagade, M. Fall, and Z. Al-Moselly, Strength and suction development of cemented paste backfill with ternary cement blends, Canad. Civil Eng. J (2023).
  • ] D. Baş and İ.H. Boyacı, Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction, J. Food Eng. 78(3) (2007 Feb 12007), pp. 846–854. doi:10.1016/j.jfoodeng.2005.11.025
  • M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, and L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta. 76, 5 (2008 Sep 15), pp. 965–977. doi:10.1016/j.talanta.2008.05.019.
  • ] S. Panchal, D. Deb, and T. Sreenivas, Mill tailings based composites as paste backfill in mines of U-bearing dolomitic limestone ore, J. Rock Mech. Geotech. Eng. 10, 2 (2018), pp. 310–322. doi:10.1016/j.jrmge.2017.08.004
  • A. Hasan and W.K. Ting, Temperature Effect on Mohr–Coulomb’s effective strength parameters of paste backfill, Front. Mater. 8 (2022), pp. 622. doi:10.3389/fmats.2021.794089.
  • M. Fall, T. Belem, S. Samb, and M. Benzaazoua, Experimental characterization of the stress–strain behaviour of cemented paste backfill in compression, J. Mater. Sci. 42 (11) (2007), pp. 3914–3922. doi:10.1007/s10853-006-0403-2.
  • ] K. Klein and D. Simon, Effect of specimen composition on the strength development in cemented paste backfill, Can. Geotech. J. 43, 3 (2006), pp. 310–324. doi:10.1139/T06-005
  • E. Yilmaz, T. Belem, and M. Benzaazoua, Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions, Eng. Geol. 185 (2015), pp. 52–62. 10.1016/j.enggeo.2014.11.015.
  • M. Fall and M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, Cem. Concr. Compos. 32 (10) (2010b), pp. 819–828. doi:10.1016/j.cemconcomp.2010.08.002.
  • Z. Aldhafeeri and M. Fall, Time and damage induced changes in the chemical reactivity of cemented paste backfill, J. Environ. Chem. Eng. 4 (4) (2016), pp. 4038–4049. doi:10.1016/j.jece.2016.09.006.
  • ] J. Haiqiang, M. Fall, and L. Cui, Yield stress of cemented paste backfill in sub-zero environments: Experimental results, Miner. Eng. 92, Jun (2016), pp. 141–150. doi:10.1016/j.mineng.2016.03.014
  • J. Bian, M. Fall, and S. Haruna, Sulphate induced changes in rheological properties of fibre-reinforced cemented paste backfill, Mag. Concr. Res. (2019), pp. 1–35. doi:10.1680/jmacr.19.00311.
  • ] M. Hefni, and F. Hassani, Effect of air entrainment on cemented mine backfill properties: Analysis based on response surface methodology, Minerals. 11, 1 (2021), pp. 81. doi:10.3390/min11010081
  • X. Dai, L. Ren, X. Gu, E. Yilmaz, K. Fang, and H. Jiang, Strength analysis and optimization of alkali activated slag backfills through response surface methodology, Front. Mater. 9 (2022), pp. 96. doi:10.3389/fmats.2022.844608.
  • ] M. Galetakis, and C. Roumpos, A multi-objective response surface analysis for the determination of the optimal cut-off quality and minimum thickness for selective mining of multiple-layered lignite deposits, Ener. Sou. Part A: Recover Utilization, And Environ. Eff. 37, 4 (2015), pp. 428–439. doi:10.1080/15567036.2011.588675
  • ] M. Fall, M. Benzaazoua, and E.G. Saa, Mix proportioning of underground cemented tailings backfill, Tunn. Undergr. Space Technol. 23, 1 (2008), pp. 80–90. doi:10.1016/j.tust.2006.08.005
  • S. Bouzalakos, A.W.L. Dudeney, and B.K.C. Chan, Formulating and optimising the compressive strength of controlled low-strength materials containing mine tailings by mixture design and response surface methods, Min. Eng. 53 (2013), pp. 48–56. 10.1016/j.mineng.2013.07.007.
  • A. Wu, Z. Ruan, R. Bürger, S. Yin, J. Wang, and Y. Wang, Optimization of flocculation and settling parameters of tailings slurry by response surface methodology, Min. Eng. 156 (2020), pp. 106488. 10.1016/j.mineng.2020.106488.
  • L. Zhu, Z. Jin, Y. Zhao, and Y. Duan, Rheological properties of cemented coal gangue backfill based on response surface methodology, Constr. Build. Mater. 306 (2021), pp. 124836. 10.1016/j.conbuildmat.2021.124836.
  • ] C. Héctor, M.G. María, & Z. De María, S. Cámara, Experimental design and multiple response optimization, using the desirability function in analytical methods development, Tal. Internation. J. Pure & Appl. Anal. Chem. 124, 124 (2014), pp. 123–138. doi:10.1016/j.talanta.2014.01.034
  • G. Derringer and R. Suich, Simultaneous optimization of several responses variables, J. Qual. Technol. 12 (4) (1980), pp. 214–219. doi:10.1080/00224065.1980.11980968.
  • M. Fall, J.C. Célestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol 114 (3–4) (2010), pp. 397–413. doi:10.1016/j.enggeo.2010.05.016.
  • L. Cui and M. Fall, Mechanical and thermal properties of cemented tailings materials at early ages: Influence of initial temperature, curing stress and drainage conditions, Constr. Build. Mater. 125 (2016), pp. 553–563. 10.1016/j.conbuildmat.2016.08.080.
  • A. Ghirian and M. Fall, Strength evolution and deformation behaviour of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage, Int. J. Min. Sci. Technol. 26 (5) (2016), pp. 809–817. doi:10.1016/j.ijmst.2016.05.039.
  • ] E. Bauer, J.G.G. de Sousa, E.A. Guimarães, and F.G.S. Silva, Study of the laboratory vane test on mortars, Build. Environ. 42, 1 (2007), pp. 86–92. doi:10.1016/j.buildenv.2005.08.016
  • M.A. Abd Elaty and M.F. Ghazy, Flow properties of fresh concrete by using modified geotechnical vane shear test, HBRC J. 8 (3) (2012), pp. 159–169. doi:10.1016/j.hbrcj.2012.07.001.
  • B. Kondraivendhan and B. Bhattacharjee, Flow behavior and strength for fly ash blended cement paste and mortar, Int. J. Sustain. Built Environ 4 (2) (2015), pp. 270–277. doi:10.1016/j.ijsbe.2015.09.001.
  • B. Kondraivendhan and B. Bhattacharjee, Standard Test Methods for Laboratory Miniature Vane Shear Test for Saturated Fine-Grained Clayey Soil, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, ASTM, United States, 2016.
  • B. Xiao, M. Fall, and A. Roshani, Towards understanding the rheological properties of Slag-cemented paste backfill, Int. J. Min. Reclam. Environ. 35 (4) (2020), pp. 268–290. doi:10.1080/17480930.2020.1807667.
  • X. Xu, M. Fall, I. Alainachi, and K. Fang, Characterization of fibre-reinforced backfill/rock interface through direct shear tests, Geotechn. Res. 7 (1) (2020), pp. 11–25. doi:10.1680/jgere.19.00029.
  • ] X. Tian, M. Fall, Compressive and shear response of fibre-reinforced composite backfill: Impact of field curing temperatures, Geosynthetics. 0, 0 (2022), pp. 1–14. doi:10.1680/jgein.22.00310

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.