74
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Stress behaviour of cemented paste backfill within temperature controlled stope model

ORCID Icon & ORCID Icon
Pages 996-1015 | Received 27 Jun 2023, Accepted 06 Oct 2023, Published online: 14 Oct 2023

References

  • E. Yilmaz and M. Guresci, Design and characterization of underground paste backfill, in Paste Tailings Management, Springer, Cham, 2017, pp. 111–143. https://doi.org/10.1007/978-3-319-39682-8_5.
  • E.T. Asr, R. Kakaie, M. Ataei, and M.R. Tavakoli Mohammadi, A review of studies on sustainable development in mining life cycle, J. Cleaner Prod. 229 (2019), pp. 213–231. https://doi.org/10.1016/j.jclepro.2019.05.029.
  • S. Cao, G. Xue, E. Yilmaz, and Z. Yin, Assessment of rheological and sedimentation characteristics of fresh cemented tailings backfill slurry, Int. J. Min. Reclam. Environ. 35 (2021), pp. 319–335. https://doi.org/10.1080/17480930.2020.1826092.
  • M. Sheshpari, A review of underground mine backfilling methods with emphasis on cemented paste backfill, Electron. J. Geotech. Eng. 20 (2015), pp. 5183–5208.
  • M. Helinski, M. Fahey, and A. Fourie, Numerical modeling of cemented mine backfill deposition, J. Geotech. Geoenviron. Eng 133 (10) (2007), pp. 1308–1319. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1308).
  • R.M. Rankine and N. Sivakugan, Geotechnical properties of cemented paste backfill from Cannington Mine, Australia, Geotech. Geol. Eng 25 (4) (2007), pp. 383–393. https://doi.org/10.1007/s10706-006-9104-5.
  • A. Ghirian and M. Fall, Coupled Behavior of cemented paste backfill at early ages, Geotech. Geol. Eng 33 (5) (2015), pp. 1141–1166. https://doi.org/10.1007/s10706-015-9892-6.
  • M.A. Rahmat, A.F. Ismail, E.S. Aziman, N.D. Rodzi, F. Mohamed, and I. Abdul Rahman, The impact of unregulated industrial tin-tailing processing in Malaysia: Past, present and way forward, Resour. Policy. 78 (2022), pp. 102864. https://doi.org/10.1016/J.RESOURPOL.2022.102864.
  • L. Li and P. Yang, A numerical evaluation of continuous backfilling in cemented paste backfilled stope through an application of wick drains, Int. J. Min. Sci. Technol. 25 (6) (2015), pp. 897–904. https://doi.org/10.1016/j.ijmst.2015.09.004.
  • M. Fall, M. Benzaazoua, and E.G. Saa, Mix proportioning of underground cemented tailings backfill, Tunn. Undergr. Space Technol. 23 (1) (2008), pp. 80–90. https://doi.org/10.1016/j.tust.2006.08.005.
  • M. Benzaazoua, M. Fall, and T. Belem, A contribution to understanding the hardening process of cemented pastefill, Miner. Eng. 17 (2) (2004), pp. 141–152. https://doi.org/10.1016/j.mineng.2003.10.022.
  • B. Yan, X. Lai, H. Jia, E. Yilmaz, and C. Hou, A solution to the time-dependent stress distribution in suborbicular backfilled stope interaction with creeping rock, Adv. Civ. Eng 2021 (2021), pp. 1–18. https://doi.org/10.1155/2021/5533980.
  • Y. Li, L. Jin, and L. Zhang, Mechanical parameters of cemented paste backfilling and its failure modes under different loading rates, Electron. J. Geotech. Eng. 21 (2016), pp. 969–978.
  • O. Agboola, D.E. Babatunde, O.S. Isaac Fayomi, E.R. Sadiku, P. Popoola, L. Moropeng, A. Yahaya, and O.A. Mamudu, A review on the impact of mining operation: Monitoring, assessment and management, Results Eng. 8 (2020), pp. 100181. https://doi.org/10.1016/J.RINENG.2020.100181.
  • K. Pirapakaran and N. Sivakugan, Arching within hydraulic fill stopes, Geotech. Geol. Eng 25 (1) (2007), pp. 25–35. https://doi.org/10.1007/s10706-006-0003-6.
  • E. Yilmaz, Stope depth effect on field behaviour and performance of cemented paste backfills, Int. J. Min. Reclam. Environ. 32 (2018), pp. 273–296. https://doi.org/10.1080/17480930.2017.1285858.
  • F. Wang, X. Li, G. Couples, J. Shi, J. Zhang, Y. Tepinhi, and L. Wu, Stress arching effect on stress sensitivity of permeability and gas well production in Sulige gas field, J. Pet. Sci. Eng. 125 (2015), pp. 234–246. https://doi.org/10.1016/J.PETROL.2014.11.024.
  • J.W. Landry, G.S. Grest, and S.J. Plimpton, Discrete element simulations of stress distributions in silos: Crossover from two to three dimensions, Pow. Technol. 139 (3) (2004), pp. 233–239. https://doi.org/10.1016/j.powtec.2003.10.016.
  • M. Sperl, Experiments on corn pressure in silo cells – translation and comment of Janssen’s paper from 1895, Granul. Matter. 8 (2006), pp. 59–65. https://doi.org/10.1007/s10035-005-0224-z.
  • B.D. Thompson, M.W. Grabinsky, W.F. Bawden, and D.B. Counter, In-Situ Measurements of Cemented Paste Backfill in Long-Hole Stopes, CANUS Rock Mechanics Symposium, In, 2009, pp. 1–10.
  • B.D. Thompson, W.F. Bawden, and M.W. Grabinsky, In situ measurements of cemented paste backfill at the cayeli mine, Can. Geotech. J. 49 (7) (2012), pp. 755–772. https://doi.org/10.1139/t2012-040.
  • A. Hasan, G. Suazo, J. Doherty, and A. Fourie, In-stope measurements at two Western Australian mine sites, In: Proceedings of the 17th International Seminar on Paste and Thickened Tailings. Vancouver, 2014, pp. 355–368.
  • J.P. Doherty, A. Hasan, G.H. Suazo, and A. Fourie, Investigation of some controllable factors that impact the stress state in cemented paste backfill, Can. Geotech. J. 52 (12) (2015), pp. 1901–1912. https://doi.org/10.1139/cgj-2014-0321.
  • J. Oke, K. Hawley, T. Belem, and A. Hashemi, Paste backfill continuous pour: Red Lake operations case study, Proceedings of the 24th International Conference on Paste, Thickened and Filtered Tailings, 2021, pp. 381–396. https://doi.org/10.36487/ACG_repo/2115_31.
  • S. Chen, W. Wang, R. Yan, A. Wu, Y. Wang, and E. Yilmaz, A joint experiment and discussion for strength characteristics of cemented paste backfill considering curing conditions, Minerals 12 (2) (2022), pp. 211. https://doi.org/10.3390/min12020211.
  • M. Fahey, M. Helinski, and A. Fourie, Development of specimen curing procedures that account for the influence of effective stress during curing on the strength of cemented mine backfill, Geotech. Geol. Eng 29 (5) (2011), pp. 709–723. https://doi.org/10.1007/s10706-011-9412-2.
  • N. Abdul-Hussain and M. Fall, Thermo-hydro-mechanical behaviour of sodium silicate-cemented paste tailings in column experiments, Tunn. Undergr. Space Technol. 29 (2012), pp. 85–93. https://doi.org/10.1016/j.tust.2012.01.004.
  • A. Ghirian and M. Fall, Strength evolution and deformation behaviour of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage, Int. J. Min. Sci. Technol. 26 (5) (2016), pp. 809–817. https://doi.org/10.1016/j.ijmst.2016.05.039.
  • A. Wu, Y. Wang, B. Zhou, and J. Shen, Effect of initial backfill temperature on the deformation Behavior of early age cemented paste backfill that contains sodium silicate, Adv. Mater. Sci. Eng 2016 (2016), pp. 1–10. https://doi.org/10.1155/2016/8481090.
  • M. Fahey, M. Helinski, and A. Fourie, Some aspects of the mechanics of arching in backfilled stopes, Can. Geotech. J. 46 (11) (2009), pp. 1322–1336. https://doi.org/10.1139/T09-063.
  • K. Fang, J. Zhang, L. Cui, L. Ding, X. Xu, and W. Timms, Mathematical modelling and simulation for hydrating backfill body under cemented paste backfill/rock interface loading, Int. J. Min. Reclam. Environ. 37 (2) (2023), pp. 87–109. https://doi.org/10.1080/17480930.2022.2142423.
  • L. Cui and M. Fall, Multiphysics modeling of arching effects in fill mass, Comput. Geotech. 83 (2017), pp. 114–131. https://doi.org/10.1016/j.compgeo.2016.10.021.
  • J. Qin, X. Pang, A. Santra, G. Cheng, and H. Li, Various admixtures to mitigate the long-term strength retrogression of Portland cement cured under high pressure and high temperature conditions, J. Rock Mech. Geotech. Eng. 15 (1) (2023), pp. 191–203. https://doi.org/10.1016/j.jrmge.2022.02.005.
  • J.C. Célestin and M. Fall, Thermal conductivity of cemented paste backfill material and factors affecting it, Int. J. Min. Reclam. Environ. 23 (4) (2009), pp. 274–290. https://doi.org/10.1080/17480930902731943.
  • M. Fall, J.C. Célestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol 114 (3–4) (2010), pp. 397–413. https://doi.org/10.1016/j.enggeo.2010.05.016.
  • O. Nasir and M. Fall, Shear behaviour of cemented pastefill-rock interfaces, Eng. Geol 101 (3–4) (2008), pp. 146–153. https://doi.org/10.1016/j.enggeo.2008.04.010.
  • Y. Potvin, E. Thomas, and A. Fourie, Handbook on mine fill, Crawley WA, Australia: Australian Centre for Geomechanics, 2005.
  • W.K. Ting, A. Hasan, F. Sahdi, S.N.L. Taib, N.M. Sutan, B.A. Aziz, and A. Fourie, A narrow wall System to capture temperature stress–strain Behavior in paste backfill, Geotech. Test. J. 43 (2) (2020), pp. 20170383. https://doi.org/10.1520/GTJ20170383.
  • N.D. Jarrett, A Study of the Influence of Wall Flexibility on Pressure in Rectangular Silos. Ph.D. diss., Brunel University, 1991.
  • R.J. Goodey, C.J. Brown, and J.M. Rotter, Predicted patterns of filling pressures in thin-walled square silos, Eng. Struct. 28 (1) (2006), pp. 109–119. https://doi.org/10.1016/j.engstruct.2005.08.004.
  • L. Li, M. Aubertin, R. Simon, B. Bussière, and T. Belem, Modeling arching effects in narrow backfilled stopes with FLAC, In: Proceedings of 3rd international FLAC symposium, Sudbury, Canada, 2003, pp. 211–218.
  • L. Li and M. Aubertin, An improved analytical solution to estimate the stress state in subvertical backfilled stopes, Can. Geotech. J. 45 (10) (2008), pp. 1487–1496. https://doi.org/10.1139/T08-060.
  • L. Li and M. Aubertin, An analytical solution for the nonlinear distribution of effective and total stresses in vertical backfilled stopes, Geomech. Geoeng 5 (4) (2010), pp. 237–245. https://doi.org/10.1080/17486025.2010.497871.
  • S. Widisinghe and N. Sivakugan, Vertical stresses within granular materials in containments, Int. J. Geotech. Eng 8 (4) (2014), pp. 431–435. https://doi.org/10.1179/1939787913Y.0000000031.
  • B. Yan, W. Zhu, C. Hou, and K. Guan, A three-dimensional analytical solution to the arching effect in inclined backfilled stopes, Geomech. Geoeng 14 (2) (2019), pp. 136–147. https://doi.org/10.1080/17486025.2019.1574031.
  • M. Helinski, M. Fahey, and A. Fourie, Behavior of cemented paste backfill in two mine stopes: Measurements and modeling, J. Geotech. Geoenviron. Eng 137 (2) (2011), pp. 171–182. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000418.
  • M.L. Walske. An Experimental Study of Cementing Paste Backfill. Ph.D. diss., The University of Western Australia, 2014.
  • L. Cui, S.P. Singalreddy, and G. Guo, Geomechanical behavior and properties of cemented paste backfill under passive interface loading and their influences on field-scale stability, Acta Geotech. 18 (7) (2023), pp. 3927–3945. https://doi.org/10.1007/s11440-023-01798-4.
  • E. Hoek and M.S. Diederichs, Empirical estimation of rock mass modulus, Int. J. Rock Mech. Min. Sci. 43 (2006), pp. 203–215. 10.1016/j.ijrmms.2005.06.005.
  • T. Belem and M. Benzaazoua, Design and application of underground mine paste backfill technology, Geotech. Geol. Eng 26 (2) (2008), pp. 147–174. https://doi.org/10.1007/s10706-007-9154-3.
  • M.W. Grabinsky and B.D. Thompson, Thermally induced stresses in cemented paste backfill, Geotech. News 27 (2009), pp. 36–40.
  • B.D. Thompson, W.F. Bawden, and M.W. Grabinsky, In-situ monitoring of cemented paste backfill pressure to increase backfilling efficiency, Can. Inst. Min. J 2 (2011), pp. 1–10.
  • A. Hasan and W.K. Ting, Temperature effect on Mohr–Coulomb’s effective strength parameters of paste backfill, Front. Mater. 8 (2022), pp. 1–13. https://doi.org/10.3389/fmats.2021.794089.
  • N. Liu, L. Cui, and Y. Wang, Analytical Assessment of internal stress in cemented paste backfill, Adv. Mat. Sci. Engr 2020 (2020), pp. 1–13. https://doi.org/10.1155/2020/6666548.
  • M. Yilmaz, B. Belem, E. Benzaazoua, and T. Bussiére, Assessment of the modified CUAPS apparatus to estimate in situ properties of cemented paste backfill, Geotech. Test. J. 33 (5) (2010), pp. 102689. https://doi.org/10.1520/GTJ102689.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.