389
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Using mining waste for CO2 sequestration: exploring opportunities through mineral carbonation, nature-based solutions, and CCUS

ORCID Icon, , , &
Pages 425-441 | Received 27 Jul 2023, Accepted 08 Feb 2024, Published online: 21 Feb 2024

References

  • P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. Van Diemen, and D. McCollum, IPCC, 2022: Climate change 2022: Mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change, Cambridge Univ. Press. Cambridge, UK New York, NY, USA (2022).
  • C.B. Field and M.R. Raupach, The Global Carbon Cycle: Integrating Humans, Climate And The Natural World, Island Press, Washington, (2004), p. 526.
  • P. Nema, S. Nema, and P. Roy, An overview of global climate changing in current scenario and mitigation action, Renew. Sustain. Energy. Rev 16 (2012), pp. 2329–2336. doi:10.1016/j.rser.2012.01.044.
  • UNFCCC, Paris agreement, Paris Agreement. Decision 1/CP.17 - UNFCCC Document FCCC/CP/2015/L.9/Rev.1/2015.
  • S.I. Seneviratne, M.G. Donat, A.J. Pitman, R. Knutti, and R.L. Wilby, Allowable CO2 emissions based on regional and impact-related climate targets, Nature 529 (7587) (2016), pp. 477–483. doi:10.1038/nature16542.
  • A.G. Olabi and M.A. Abdelkareem, Renewable energy and climate change, Renew. Sustain. Energy. Rev 158 (2022), pp. 112111. doi:10.1016/j.rser.2022.112111.
  • D.J. Arent, A. Wise, and R. Gelman, The status and prospects of renewable energy for combating global warming, Energy Econ. 33 (4) (2011), pp. 584–593. doi:10.1016/j.eneco.2010.11.003.
  • A.A. Olajire, A review of mineral carbonation technology in sequestration of CO2, J. Pet. Sci. Eng. 109 (2013), pp. 364–392. doi:10.1016/j.petrol.2013.03.013.
  • A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, and M.M. Maroto-Valer, A review of mineral carbonation technologies to sequester CO2, Chem Soc Rev 43 (23) (2014), pp. 8049–8080. doi:10.1039/C4CS00035H.
  • W. Liu, L. Teng, S. Rohani, Z. Qin, B. Zhao, C.C. Xu, S. Ren, Q. Liu, B. Liang, et al., CO2 mineral carbonation using industrial solid wastes: A review of recent developments, The Chemical Engineering Journal 416 (2021), pp. 129093. doi:10.1016/j.cej.2021.129093.
  • B.W. Griscom, J. Adams, P.W. Ellis, R.A. Houghton, G. Lomax, D.A. Miteva, W.H. Schlesinger, D. Shoch, J.V. Siikamäki, P. Smith, P. Woodbury, C. Zganjar, A. Blackman, J. Campari, R.T. Conant, C. Delgado, P. Elias, T. Gopalakrishna, M.R. Hamsik, M. Herrero, J. Kiesecker, E. Landis, L. Laestadius, S.M. Leavitt, S. Minnemeyer, S. Polasky, P. Potapov, F.E. Putz, J. Sanderman, M. Silvius, E. Wollenberg, J. Fargione, et al., Natural climate solutions, Proc. Natl. Acad. Sci. U. S. A. 114 (44) (2017), pp. 11645–11650. doi:10.1073/pnas.1710465114.
  • H. Keith, M. Vardon, C. Obst, V. Young, R.A. Houghton, and B. Mackey, Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting, Sci. Total Environ. 769 (2021), pp. 144341. doi:10.1016/j.scitotenv.2020.144341.
  • N. Seddon, E. Daniels, R. Davis, A. Chausson, R. Harris, X. Hou-Jones, S. Huq, V. Kapos, G.M. Mace, A.R. Rizvi, H. Reid, D. Roe, B. Turner, S. Wicander, et al., Global recognition of the importance of nature-based solutions to the impacts of climate change, Glob. Sustain 3 (2020), pp. e15. doi:10.1017/sus.2020.8.
  • D. Lefebvre, A.G. Williams, G.J.D. Kirk, J.B. Paul, J. Meersmans, J. Meersmans, M.R. Silman, F. Román-Dañobeytia, J. Farfan, P. Smith, Assessing the carbon capture potential of a reforestation project, Sci. Rep. 11 (2021), pp. 19907. doi:10.1038/s41598-021-99395-6.
  • D.Y.C. Leung, G. Caramanna, and M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy. Rev 39 (2014), pp. 426–443. doi:10.1016/j.rser.2014.07.093.
  • M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P.M. Trusler, P. Webley, J. Wilcox, N. Mac Dowell, et al., Carbon capture and storage (CCS): The way forward, Energy Environ. Sci. 11 (5) (2018), pp. 1062–1176. doi:10.1039/C7EE02342A.
  • S. Anderson and R. Newell, Prospects for carbon capture and storage technologies, Annu. Rev. Environ. Resour. 29 (1) (2004), pp. 109–142. doi:10.1146/annurev.energy.29.082703.145619.
  • N. Mac Dowell, P.S. Fennell, N. Shah, and G.C. Maitland, The role of CO2 capture and utilization in mitigating climate change, Nat. Clim. Chang. 7 (4) (2017), pp. 243–249. doi:10.1038/nclimate3231.
  • A. Al-Mamoori, A. Krishnamurthy, A.A. Rownaghi, and F. Rezaei, Carbon capture and utilization update, Energy Technol. 5 (2017), pp. 834–849. doi:10.1002/ente.201600747.
  • M. Tayebi-Khorami, M. Edraki, G. Corder, and A. Golev, Re-thinking mining waste through an integrative, Minerals 9 (5) (2019), pp. 286. doi:10.3390/min9050286.
  • S. Yin, Y. Shao, A. Wu, H. Wang, X. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Clean Prod 247 (2020), pp. 119590. doi:10.1016/j.jclepro.2019.119590.
  • J. Pickin, C. Wardle, K. O’farrell, L. Stovell, P. Nyunt, and S. Guazzo et al., National Waste Report 2022, Blue Environment Pty Ltd/2022.
  • S.L. de Moraes, F.G. Motta, C.P. Massola, E.M. Saccoccio, and M.C. Júnior, Rejeitos de mineração: um olhar do cenário brasileiro - parte I: cadeira produtiva., in 18° Simpósio de Mineração, São Paulo, (2017), pp. 228–240.
  • Generation of waste by waste category, hazardousness and NACE Rev. 2 activity. Available at https://ec.europa.eu/eurostat/databrowser/view/env_wasgen/.
  • H.E. Jamieson, Geochemistry and mineralogy of solid mine waste: Essential knowledge for predicting environmental impact, Elements 7 (6) (2011), pp. 381–386. doi:10.2113/gselements.7.6.381.
  • D.M. Franks, D.V. Boger, C.M. Côte, and D.R. Mulligan, Sustainable development principles for the disposal of mining and mineral processing wastes, Resour. Policy 36 (2) (2011), pp. 114–122. doi:10.1016/j.resourpol.2010.12.001.
  • S. Singh, L.B. Sukla, and S.K. Goyal, Mine waste & circular economy, Materials Today: Proceedings (2020), pp. 332–339. doi:10.1016/j.matpr.2020.01.616. 30
  • S. Kalisz, K. Kibort, J. Mioduska, M. Lieder, and A. Małachowska, Waste management in the mining industry of metals ores, coal, oil and natural gas - a review, J. Environ. Manage. 304 (2022), pp. 114239. doi:10.1016/j.jenvman.2021.114239.
  • Z. Bian, X. Miao, S. Lei, S. Chen, W. Wang, and S. Struthers, The challenges of reusing mining and mineral-processing wastes, Science 80. 337 (2012), pp. 702–703. doi:10.1126/science.1224757.
  • J. Weiler, B.A. Firpo, and I.A.H. Schneider, Technosol as an integrated management tool for turning urban and coal mining waste into a resource, Miner. Eng. 147 (2020), pp. 106179. doi:10.1016/j.mineng.2019.106179.
  • O. Bashir Wani, S. Khan, M. Shoaib, H. Zeng, and E.R. Bobicki, Decarbonization of mineral processing operations: Realizing the potential of carbon capture and utilization in the processing of ultramafic nickel ores, The Chemical Engineering Journal 433 (2022), pp. 134203. doi:10.1016/j.cej.2021.134203.
  • N.R. Galina, G.L.A.F. Arce, and I. Ávila, Evolution of carbon capture and storage by mineral carbonation: Data analysis and relevance of the theme, Miner. Eng. 142 (2019), pp. 105879. doi:10.1016/j.mineng.2019.105879.
  • F.M. Baena-Moreno, E. Leventaki, A. Riddell, J. Wojtasz-Mucha, and D. Bernin, Effluents and residues from industrial sites for carbon dioxide capture: a review, Environ Chem Lett 21 (1) (2023), pp. 319–337. doi:10.1007/s10311-022-01513-x.
  • M. Hitch, S.M. Ballantyne, and S.R. Hindle, Revaluing mine waste rock for carbon capture and storage, Int. J. Mining, Reclam. Environ 24 (2010), pp. 64–79. doi:10.1080/17480930902843102.
  • I.M. Power, A.L. Harrison, G.M. Dipple, S.A. Wilson, P.B. Kelemen, M. Hitch, G. Southam, et al., Carbon mineralization: From natural analogues to engineered systems, Rev. Mineral. Geochemistry 77 (1) (2013), pp. 305–360. doi:10.2138/rmg.2013.77.9.
  • N.A. Kruse and W.H.J. Strosnider, Carbon dioxide dynamics and sequestration in mine water and waste, Mine Water Environ. 34 (2015), pp. 3–9.
  • F.W.K. Khudhur, J.M. MacDonald, A. Macente, and L. Daly, The utilization of alkaline wastes in passive carbon capture and sequestration: Promises, challenges and environmental aspects, Sci. Total Environ. 823 (2022), pp. 153553. doi:10.1016/j.scitotenv.2022.153553.
  • A. Busch, S. Alles, Y. Gensterblum, D. Prinz, D.N. Dewhurst, and M.D. Raven, Carbon dioxide storage potential of shales, Int. J. Greenh. Gas Control 2 (2008), pp. 297–308. doi:10.1016/j.ijggc.2008.03.003.
  • J.W. Larsen, The effects of dissolved CO2 on coal structure and properties, Int. J. Coal Geol. 57 (1) (2004), pp. 63–70. doi:10.1016/j.coal.2003.08.001.
  • G.S. Bromhal, W. Neal Sams, S. Jikich, T. Ertekin, and D.H. Smith, Simulation of CO2 sequestration in coal beds: The effects of sorption isotherms, Chem. Geol. 217 (3–4) (2005), pp. 201–211. doi:10.1016/j.chemgeo.2004.12.021.
  • X. Wang, W. Ni, J. Li, S. Zhang, M. Hitch, and R. Pascual, Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms, Cem. Concr. Res. 125 (2019), pp. 105893. doi:10.1016/j.cemconres.2019.105893.
  • X. Wang, W. Ni, J. Li, S. Zhang, K. Li, and W. Hu, Use of CO2 to cure steel slag and gypsum-based material, Energies 14 (16) (2021), pp. 5174. doi:10.3390/en14165174.
  • J. Li, M. Hitch, I.M. Power, and Y. Pan, Integrated mineral carbonation of ultramafic mine deposits—A review, Minerals 8 (4) (2018), pp. 147. doi:10.3390/min8040147.
  • P. Renforth, The negative emission potential of alkaline materials, Nat. Commun. 10 (1) (2019), pp. 1401. doi:10.1038/s41467-019-09475-5.
  • W. Seifritz, CO2 disposal by means of silicates, Nature 345 (6275) (1990), pp. 486. doi:10.1038/345486b0.
  • I.M. Power, S.A. Wilson, and G.M. Dipple, Serpentinite carbonation for CO2 sequestration, Elements 9 (2) (2013), pp. 115–121. doi:10.2113/gselements.9.2.115.
  • S.A. Wilson, G.M. Dipple, I.M. Power, J.M. Thom, R.G. Anderson, M. Raudsepp, J.E. Gabites, G. Southam, et al., Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: Examples from the clinton creek and cassiar chrysotile deposits, Canada, Econ. Geol 104 (2009), pp. 95–112. doi:10.2113/gsecongeo.104.1.95.
  • A. Jacobs, M. Hitch, S. Mosallanejad, T. Bhatelia, J. Li, and F. Farhang, Mineral carbonation potential (MCP) of mine waste material: Derivation of an MCP parameter, Minerals 13 (9) (2023), pp. 1129. doi:10.3390/min13091129.
  • R. Khalidy and R.M. Santos, The fate of atmospheric carbon sequestrated through weathering in mine tailings, Miner. Eng. 163 (2021), pp. 106767. doi:10.1016/j.mineng.2020.106767.
  • K. Lechat, J.-M. Lemieux, J. Molson, G. Beaudoin, and R. Hébert, Field evidence of CO2 sequestration by mineral carbonation in ultramafic milling wastes, thetford mines, Canada, Int. J. Greenh. Gas Control 47 (2016), pp. 110–121. doi:10.1016/j.ijggc.2016.01.036.
  • S.A. Wilson, A.L. Harrison, G.M. Dipple, I.M. Power, S.L.L. Barker, and K. Ulrich Mayer, Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining, Int. J. Greenh. Gas Control 25 (2014), pp. 121–140. doi:10.1016/j.ijggc.2014.04.002.
  • G. Beaudoin, A. Nowamooz, G.P. Assima, K. Lechat, A. Gras, A. Entezari, Passive mineral carbonation of Mg-rich mine wastes by atmospheric CO2, Energy Procedia 114 (2017), pp. 6083–6086. doi:10.1016/j.egypro.2017.03.1745.
  • Carbon dioxide capture and storage. IPCC special report. Cambridge, New York, Cambridge University Press, (2005).
  • I.M. Power, G.M. Dipple, P.M.D. Bradshaw, and A.L. Harrison, Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British columbia, Canada, Int. J. Greenh. Gas Control 94 (2020), pp. 102895. doi:10.1016/j.ijggc.2019.102895.
  • K.S. Lackner, C.H. Wendt, D.P. Butt, E.L. Joyce, and D.H. Sharp, Carbon dioxide disposal in carbonate minerals, Energy 20 (11) (1995), pp. 1153–1170. doi:10.1016/0360-5442(95)00071-N.
  • S. Yadav and A. Mehra, A review on ex situ mineral carbonation, Environ. Sci. Pollut. Res. 28 (10) (2021), pp. 12202–12231. doi:10.1007/s11356-020-12049-4.
  • S.J. Gerdemann, W.K. O’Connor, D.C. Dahlin, L.R. Penner, and H. Rush, Ex Situ Aqueous Mineral Carbonation, Environ. Sci. Technol. 41 (7) (2007), pp. 2587–2593. doi:10.1021/es0619253.
  • E. Cohen-Shacham, G. Walters, C. Janzen, and S. Maginnis, Nature-based solutions to address global societal challenges, IUCN Gland. Switz 97 (2016), pp. 2016–2036.
  • S. Osaka, R. Bellamy, and N. Castree, Framing “nature‐based” solutions to climate change, Wiley Interdiscip. Rev. Clim. Chang 12 (2021), pp. e729. doi:10.1002/wcc.729.
  • N. Kabisch, N. Frantzeskaki, S. Pauleit, S. Naumann, M. Davis, and M. Artmann, Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action, Ecol. Soc. 21 (2016), doi:10.5751/ES-08373-210239.
  • V. Allory, G. Séré, and S. Ouvrard, A meta‐analysis of carbon content and stocks in technosols and identification of the main governing factors, Eur J Soil Sci 73 (1) (2022), pp. e13141. doi:10.1111/ejss.13141.
  • W. Daniels and C. Zipper, Creation and management of productive minesoils, Virginia Coop. Ext. Publ 460-121 (2010), pp. 12.
  • G. Echevarria and J. Louis Morel, Technosols of mining areas, Tópicos Ci. Solo 9 (2015), pp. 92–111.
  • G. Séré, C. Schwartz, S. Ouvrard, C. Sauvage, J.-C. Renat, and J.L. Morel, Soil construction: A step for ecological reclamation of derelict lands, J Soils Sediments 8 (2) (2008), pp. 130–136. doi:10.1065/jss2008.03.277.
  • G. Fellet, L. Marchiol, G. Delle Vedove, and A. Peressotti, Application of biochar on mine tailings: Effects and perspectives for land reclamation, Chemosphere 83 (9) (2011), pp. 1262–1267. doi:10.1016/j.chemosphere.2011.03.053.
  • K. Paustian, J. Lehmann, S. Ogle, D. Reay, G.P. Robertson, and P. Smith, Climate-smart soils, Climate-Smart Soils, Nature 532 (7597) (2016), pp. 49–57. doi:10.1038/nature17174.
  • R.K. Shrestha and R. Lal, Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil, Environment International 32 (6) (2006), pp. 781–796. doi:10.1016/j.envint.2006.05.001.
  • J. Ahirwal and S.K. Maiti, Assessment of soil carbon pool, carbon sequestration and soil CO2 flux in unreclaimed and reclaimed coal mine spoils, Environ. Earth Sci. 77 (1) (2018). doi:10.1007/s12665-017-7185-5
  • S. Bandyopadhyay, L.A.B. Novo, M. Pietrzykowski, and S.K. Maiti, Assessment of forest ecosystem development in coal mine degraded land by using integrated mine soil quality index (imsqi): The evidence from India, Forests 11 (2020), pp. 1–24. doi:10.3390/f11121310.
  • A.A. Juwarkar, K.L. Mehrotraa, R. Nair, T. Wanjari, S.K. Singh, and T. Chakrabarti, Carbon sequestration in reclaimed manganese mine land at Gumgaon, India, Environ. Monit. Assess. 160 (1–4) (2010), pp. 457–464. doi:10.1007/s10661-008-0710-y.
  • S. Mukhopadhyay and R.E. Masto, Carbon storage in coal mine spoil by Dalbergia sissoo roxb, Geoderma 284 (2016), pp. 204–213. doi:10.1016/j.geoderma.2016.09.004.
  • J. Frouz, Soil Biota and Ecosystem Development in Post Mining Sites, CRC Press, Prague, (2013), p. 306.
  • IUSS Working Group WRB, World Reference Base for Soil Resources 2014, FAO, Rome, (2015).
  • F. Rees, R. Dagois, D. Derrien, J.L. Fiorelli, F. Watteau, J.L. Morel, C. Schwartz, M.-O. Simonnot, G. Séré, et al., Storage of carbon in constructed technosols: In situ monitoring over a decade, Geoderma 337 (2019), pp. 641–648. doi:10.1016/j.geoderma.2018.10.009.
  • F. Ruiz, J.L. Safanelli, F. Perlatti, M.R. Cherubin, J.A.M. Demattê, C.E.P. Cerri, X.L. Otero, C. Rumpel, T.O. Ferreira, Constructing soils for climate-smart mining, Commun. Earth Environ. 4 (2023), pp. 219. doi:10.1038/s43247-023-00862-x.
  • M. Muñoz-Rojas, J.R. Román, B. Roncero-Ramos, T.E. Erickson, D.J. Merritt, P. Aguila-Carricondo, Y. Cantón, et al., Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration, Sci. Total Environ. 636 (2018), pp. 1149–1154. doi:10.1016/j.scitotenv.2018.04.265.
  • T. Kneller, R.J. Harris, A. Bateman, and M. Muñoz-Rojas, Native-plant amendments and topsoil addition enhance soil function in post-mining arid grasslands, Sci. Total Environ. 621 (2018), pp. 744–752. doi:10.1016/j.scitotenv.2017.11.219.
  • F. Moreno-Barriga, V. Díaz, J.A. Acosta, M.Á. Muñoz, Á. Faz, and R. Zornoza, Organic matter dynamics, soil aggregation and microbial biomass and activity in technosols created with metalliferous mine residues, biochar and marble waste, Geoderma 301 (2017), pp. 19–29. doi:10.1016/j.geoderma.2017.04.017.
  • R. Zornoza, M. Gómez-Garrido, S. Martínez-Martínez, M.D. Gómez-López, and Á. Faz, Bioaugmentation in technosols created in abandoned pyritic tailings can contribute to enhance soil C sequestration and plant colonization, Sci. Total Environ. 593–594 (2017), pp. 357–367. doi:10.1016/j.scitotenv.2017.03.154.
  • V. Carabassa, X. Domene, E. Díaz, and J.M. Alcañiz, Mid-term effects on ecosystem services of quarry restoration with technosols under Mediterranean conditions: 10-year impacts on soil organic carbon and vegetation development, Restor. Ecol. 28 (4) (2020), pp. 960–970. doi:10.1111/rec.13072.
  • R.G. Darmody, W.L. Daniels, J.C. Marlin, and D.L. Cremeens, Topsoil: What is it and who cares?, J. Am. Soc. Min. Reclam. 1 (2009), pp. 237–269.
  • N.K. Kundu and M.K. Ghose, Shelf life of stock-piled topsoil of an opencast coal mine, Environ Conserv 24 (1) (1997), pp. 24–30. doi:10.1017/S0376892997000064.
  • M.K. Ghose, Management of topsoil for geoenvironmental reclamation of coal mining areas, Environ. Geol. 40 (2001), pp. 1405–1410. doi:10.1007/s002540100321.
  • J. Weiler, B.A. Firpo, and I.A.H. Schneider, Coal waste derived soil-like substrate: An opportunity for coal waste in a sustainable mineral scenario, J. Clean Prod 174 (2018). doi:10.1016/j.jclepro.2017.10.341.
  • F. Ruiz, M.R. Cherubin, and T.O. Ferreira, Soil quality assessment of constructed Technosols: Towards the validation of a promising strategy for land reclamation, waste management and the recovery of soil functions, J. Environ. Manage. 276 (2020), pp. 111344. doi:10.1016/j.jenvman.2020.111344.
  • F. Ruiz, G.R.P. Andrade, L.R. Sartor, J.C.B. dos Santos, V.S. de Souza Júnior, and T.O. Ferreira, The rhizosphere of tropical grasses as driver of soil weathering in embryonic technosols (SE-Brazil), Catena 208 (2022), pp. 105764. doi:10.1016/j.catena.2021.105764.
  • V. Sheoran and R.P. Choudhary, Chapter 13 - Phytostabilization of Mine Tailings, K. Bauddh, J. Korstad and O.D.S. Sharma, eds., Elsevier, Amsertam, (2021), pp. 307–324.
  • M.O. Mendez, E.P. Glenn, and R.M. Maier, Phytostabilization potential of quailbush for mine tailings: Growth, metal accumulation, and microbial community changes, J. Environ. Qual. 36 (1) (2007), pp. 245–253. doi:10.2134/jeq2006.0197.
  • E.J. Lam, Í.L. Montofré, and Y. Ramírez, Chapter 6 - Mine Tailings Phytoremediation in Arid and Semiarid Environments, K. Bauddh, J. Korstad and O.D.S. Sharma, eds., Elsevier, Amsterdam, (2021), pp. 115–166.
  • R. Sinha, A.K. Singh, K. Bauddh, T.R. Sharma, and P. Sharma, Chapter 21 - Phytomining: A Sustainable Approach for Recovery and Extraction of Valuable Metals, K. Bauddh, J. Korstad and O.D.S. Sharma, eds., Elsevier, Amsterdam, (2021), pp. 487–506.
  • V. Sheoran, A.S. Sheoran, and P. Poonia, Phytomining: A review, Miner. Eng. 22 (2009), pp. 1007–1019. doi:10.1016/j.mineng.2009.04.001.
  • R.D. Schuiling, Farming nickel from non-ore deposits, combined with CO2 sequestration, Nat. Sci 5 (2013), pp. 445–448. doi:10.4236/ns.2013.54057.
  • M. Balat and G. Ayar, Biomass energy in the world, use of biomass and potential trends, Energ. Source. 27 (10) (2005), pp. 931–940. doi:10.1080/00908310490449045.
  • A. Placek-Lapaj, A. Grobelak, K. Fijalkowski, B.R. Singh, Å.R. Almås, and M. Kacprzak, Post – mining soil as carbon storehouse under polish conditions, J. Environ. Manage. 238 (2019), pp. 307–314. doi:10.1016/j.jenvman.2019.03.005.
  • M.K. Al-Lami, N. Oustriere, E. Gonzales, and J.G. Burken, Phytomanagement of Pb/Zn/Cu tailings using biosolids-biochar or -humus combinations: Enhancement of bioenergy crop production, substrate functionality, and ecosystem services, Sci. Total Environ. 836 (2022), pp. 155676. doi:10.1016/j.scitotenv.2022.155676.
  • S. Bachu, D. Bonijoly, J. Bradshaw, R. Burruss, S. Holloway, N.P. Christensen, O.M. Mathiassen, CO2 storage capacity estimation: Methodology and gaps, Int. J. Greenh. Gas Control 1 (2007), pp. 430–443. doi:10.1016/S1750-5836(07)00086-2.
  • E.R. Bobicki, Q. Liu, Z. Xu, and H. Zeng, Carbon capture and storage using alkaline industrial wastes, Prog. Energy Combust. Sci. 38 (2) (2012), pp. 302–320. doi:10.1016/j.pecs.2011.11.002.
  • J. Li, A.D. Jacobs, and M. Hitch, The effect of mineral composition on direct aqueous carbonation of ultramafic mine waste rock for CO2 sequestration, a case study of Turnagain ultramafic complex in British Columbia, Canada, Int. J. Mining, Reclam. Environ 36 (2022), pp. 267–286. doi:10.1080/17480930.2022.2041340.
  • S.K. Puthiya Veetil and M. Hitch, Aqueous mineral carbonation of ultramafic material: A pre-requisite to integrate into mineral extraction and tailings management operation, Environ. Sci. Pollut. Res. 28 (23) (2021), pp. 29096–29109. doi:10.1007/s11356-021-12481-0.
  • J. Pronost, G. Beaudoin, J. Tremblay, F. Larachi, J. Duchesne, R. Hébert, M. Constantin, et al., Carbon sequestration kinetic and storage capacity of ultramafic mining waste, Environ. Sci. Technol. 45 (21) (2011), pp. 9413–9420. doi:10.1021/es203063a.
  • B.J. Razote, K.M. Dela Cerna, M.J. Patricio, R.C. Eusebio, R. Alorro, A. Beltran, A. Orbecido, Leaching characteristics of an iron-rich siltation pond waste and its viability in indirect carbon sequestration, Int. J. Mining, Reclam. Environ 35 (2021), pp. 435–450. doi:10.1080/17480930.2021.1876819.
  • A. Sarvaramini, G.P. Assima, G. Beaudoin, and F. Larachi, Biomass torrefaction and CO2 capture using mining wastes - a new approach for reducing greenhouse gas emissions of co-firing plants, Fuel 115 (2014), pp. 749–757. doi:10.1016/j.fuel.2013.07.087.
  • J. Li, C. Wang, W. Ni, S. Zhu, S. Mao, and F. Jiang, Orthogonal test design for the optimization of preparation of steel slag-based carbonated building materials with ultramafic tailings as fine aggregates, Minerals 12 (2022), pp. 246. doi:10.3390/min12020246.
  • C. Chakravarthy, S. Chalouati, Y.E. Chai, H. Fantucci, and R.M. Santos, Valorization of kimberlite tailings by carbon capture and utilization (CCU) method, Minerals 10 (2020), pp. 1–18. doi:10.3390/min10070611.
  • S.N.M. Syed Hasan, F. Mohd Kusin, N.N. Nik Daud, M.A. Saadon, F. Mohamat-Yusuff, and Z.H. Ash’aari, Characterization of gold mining waste for carbon sequestration and utilization as supplementary cementitious material, Processes 9 (2021), pp. 1384. doi:10.3390/pr9081384.
  • V.L.M. Molahid, F.M. Kusin, N.M.A. Kamal, S.N.M.S. Hasan, N.A.A. Ramli, and A.M. Abdullah, et al., Carbon sequestration of limestone mine waste through mineral carbonation and utilization as supplementary cementitious material, Int. J. Integr. Eng. 13 (2021), pp. 311–320.
  • A.L. Harrison, I.M. Power, and G.M. Dipple, Accelerated carbonation of brucite in mine tailings for carbon sequestration, Environ. Sci. Technol. 47 (1) (2013), pp. 126–134. doi:10.1021/es3012854.
  • S. Bachu, Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change, Energy Convers. Manag. 41 (2000), pp. 953–970. doi:10.1016/S0196-8904(99)00149-1.
  • B. Hitchon, W.D. Gunter, T. Gentzis, and R.T. Bailey, Sedimentary basins and greenhouse gases: A serendipitous association, Energy Convers. Manag. 40 (1999), pp. 825–843. doi:10.1016/S0196-8904(98)00146-0.
  • C.M. White, D.H. Smith, K.L. Jones, A.L. Goodman, S.A. Jikich, R.B. LaCount, S.B. DuBose, E. Ozdemir, B.I. Morsi, K.T. Schroeder, et al., Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery a review, Energy Fuels 19 (3) (2005), pp. 659–724. doi:10.1021/ef040047w.
  • K. Zhang, Y. Cheng, W. Li, D. Wu, and Z. Liu, Influence of supercritical CO2 on pore structure and functional groups of coal: Implications for CO2 sequestration, J. Nat. Gas Sci. Eng. 40 (2017), pp. 288–298. doi:10.1016/j.jngse.2017.02.031.
  • R.C. Burruss, Presentations from the Second International Forum on Geologic Sequestration of CO2 in Deep, Unmineable Coal Seams (Coal-Seq III), Washington DC, (2003).
  • R.E. Carroll and J.C. Pashin, Relationship of sorption capacity to coal quality: CO2 sequestration potential of coalbed methane reservoirs in the Black Warrior basin, in International Coalbed Methane Symposium, Tuscaloosa, (2003), p. 317.
  • R.D.V. Subba and T. Gouricharan, Coal Processing And Utilization, CRC Press, Balkema, (2016), p. 502.
  • I. Reid, Non-energy uses of coal, CCC/291, IEA Clean Coal Centre, Northfields, (2018).
  • K.S. Vorres, Chemistry of mineral matter and ash in coal: An overview, in Mineral Matter and Ash in Coal, K.S. Vorres, ed., American Chemical Society, Washington, DC, (1986), p. 1.
  • K. Dong, Z. Zhai, and A. Guo, Effects of pore parameters and functional groups in coal on CO2/CH4 adsorption, ACS. Omega. 6 (48) (2021), pp. 32395–32407. doi:10.1021/acsomega.1c02573.
  • S.B. de Oliveira, H.V. Rocha, and C.C.G. Tassinari, 3D geochemical characterization of organic-rich shales of the irati formation, paraná sedimentary basin: New perspective for CO2 geological storage in southeastern Brazil, Int. J. Greenh. Gas Control 114 (2022), pp. 103563. doi:10.1016/j.ijggc.2021.103563.
  • H. Pullin, A.W. Bray, I.T. Burke, D.D. Muir, D.J. Sapsford, W.M. Mayes, P. Renforth, et al., Atmospheric carbon capture performance of legacy iron and steel waste, Environ. Sci. Technol. 53 (16) (2019), pp. 9502–9511. doi:10.1021/acs.est.9b01265.
  • D. Daval, I. Martinez, J. Corvisier, N. Findling, B. Goffé, and F. Guyot, Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling, Chem. Geol. 265 (1–2) (2009), pp. 63–78. doi:10.1016/j.chemgeo.2009.01.022.
  • I.M. Power, J. McCutcheon, A.L. Harrison, S.A. Wilson, G.M. Dipple, S. Kelly, C. Southam, G. Southam, et al., Strategizing carbon-neutral mines: A case for pilot projects, Minerals 4 (2) (2014), pp. 399–436. doi:10.3390/min4020399.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.