172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Root colonisation effects on the key hydrogeological properties of a reclamation cover with an elevated water table

ORCID Icon, &
Pages 562-575 | Received 03 Feb 2024, Accepted 26 Feb 2024, Published online: 04 Mar 2024

References

  • D.W. Blowes, C.J. Ptacek, J.L. Jambor, C.G. Weisener, D. Paktunc, W.D. Gould, and D.B. Johnson, The geochemistry of acid mine drainage, in Treatise on Geochemistry, H.D.H.K. Turekian, ed., Elsevier, Oxford, 2014, pp. 131–190.
  • B. Bussière and M. Guittonny, Hard Rock Mine Reclamation: From Prediction to Management of Acid Mine, CRC Press, Boca Raton, USA, 2020.
  • B. Ayres and M.O. Kane, Mine waste cover systems : An international perspective and applications for mine closure in New Zealand, in AusIMM New Zealand Branch Annual Conference, J. Taylor, ed, Nelson, New Zealand, 2013.
  • G.M. Tordoff, A.J.M. Baker, and A.J. Willis, Current approaches to the revegetation and reclamation of metalliferous mine wastes, Chemosphere. 41 (1–2) (2000), pp. 219–228. Pergamon. doi:10.1016/S0045-6535(99)00414-2.
  • H. Arabyarmohammadi, M. Guittonny, and I. Demers, Influence of vegetation and additional surface layers on the water balance of a reclamation cover with elevated water table, Environ. Earth. Sci. 82 10(2023), Springer Berlin Heidelberg. doi:10.1007/s12665-023-10969-1.
  • A.F. Barry, Impact de la colonisation racinaire sur les propriétés hydrogéologiques d’une couverture monocouche avec nappe phréatique surélevée, Thesis, Polytechnique Montréal, 2023.
  • A. Proteau, M. Guittonny, B. Bussière, and A. Maqsoud, Aboveground and belowground colonization of vegetation on a 17-year-old cover with capillary barrier effect built on a boreal mine tailings storage facility, Minjerals. 10 (8) (2020c), pp. 704. MDPI AG. doi:10.3390/min10080704
  • A. Proteau, M. Guittonny, A. Maqsoud, and A. Maqsoud, Impact of roots on hydrogeological parameters supporting the performance of a cover with capillary barrier effects, J. Geotech. Geoenvironmental. Eng. 147 (8) (2021), doi:10.1061/(ASCE)GT.1943-5606.0002562.
  • S. Bonetti, Z. Wei, and D. Or, A framework for quantifying hydrologic effects of soil structure across scales, Commun. Earth Environ. 2 (1) (2021), pp. 1–10. Nature Publishing Group. doi:10.1038/s43247-021-00180-0.
  • X. Shi, T. Qin, D. Yan, F. Tian, and H. Wang, A meta-analysis on effects of root development on soil hydraulic properties, Geoderma. 403 (2021), pp. 115363. Elsevier, doi:10.1016/J.GEODERMA.2021.115363.
  • S. Logsdon, M. Berli, and R. Horn, Quantifying and modeling soil structure dynamics, Quantifying Model. Soil Struct. Dyn. 3 (2013), pp. 1–9. John Wiley & Sons, Ltd doi:10.2134/ADVAGRICSYSTMODEL3.C1.
  • G. Bodner, D. Leitner, and H.-P. Kaul, Coarse and fine root plants affect pore size distributions differently, Plant Soil. 380 (1–2) (2014), pp. 133–151. Springer. doi:10.1007/s11104-014-2079-8.
  • W. Shao, J. Ni, A. Kwan Leung, Y. Su, and C.W.W. Ng, Analysis of plant root–induced preferential flow and pore-water pressure variation by a dual-permeability model, Can. Geotech. J. 54 (11) (2017), pp. 1537–1552. doi:10.1139/cgj-2016-0629.
  • M. Ghestem, R.C. Sidle, and A. Stokes, The influence of plant root systems on subsurface flow: Implications for slope stability, Bioscience. 61 (11) (2011), pp. 869–879. Oxford Academic. doi:10.1525/BIO.2011.61.11.6.
  • N.A.L. Archer, J.N. Quinton, and T.M. Hess, Below-ground relationships of soil texture, roots and hydraulic conductivity in two-phase mosaic vegetation in south-east Spain, J. Arid. Environ. 52, 4 (2002), pp. 535–553. doi:10.1006/jare.2002.1011
  • J. Lu, Q. Zhang, A.D. Werner, Y. Li, S. Jiang, and Z. Tan, Root-induced changes of soil hydraulic properties – a review, J. Hydrol. 589 (2020), pp. 125203. Elsevier doi:10.1016/J.JHYDROL.2020.125203.
  • C.W.W. Ng, J.J. Ni, A.K. Leung, and Z.J. Wang, A new and simple water retention model for root-permeated soils, Géotech. Let. 6 (1) (2016), pp. 106–111. Thomas Telford Ltd. doi:10.1680/JGELE.15.00187.
  • X.J. Jiang, W. Liu, C. Chen, J. Liu, Z.Q. Yuan, B. Jin, and X. Yu, Effects of three morphometric features of roots on soil water flow behavior in three sites in China, Geoderma. 320 (2018), pp. 161–171. Elsevier, doi:10.1016/J.GEODERMA.2018.01.035.
  • A. Jotisankasa and T. Sirirattanachat, Effects of grass roots on soil-water retention curve and permeability function1, Can. Geotech. J. 54 (11) (2017), pp. 1612–1622. NRC Research Press. doi:10.1139/CGJ-2016-0281.
  • K.P. Barley, Effects of root growth and decay on the permeability of a synthetic sandy loam, Soil Sci. 78 (3) (1954), pp. 205–210. doi:10.1097/00010694-195409000-00005.
  • A.K. Leung, A. Garg, and C.W.W. Ng, Effects of plant roots on soil-water retention and induced suction in vegetated soil, Eng. Geol. 193 (2015), pp. 183–197. Elsevier doi:10.1016/J.ENGGEO.2015.04.017.
  • A. Proteau, M. Guittonny, and B. Bussière, Impact of roots on the hydrogeological properties of silty soil covers, Can. Geotech. J. (2023). doi:10.1139/cgj-2023-0016.
  • C. Vergani and F. Graf, Soil permeability, aggregate stability and root growth: A pot experiment from a soil bioengineering perspective, Ecohydrology. 9 (5) (2016), pp. 830–842. John Wiley & Sons, Ltd. doi:10.1002/ECO.1686.
  • M.L. Diallo, Effet des racines mortes sur les propriétés hydrogéotechniques des résidus utilisés comme matériaux de recouvrement sur le site minier Manitou, Polytechnique Montréal, 2023.
  • D.A. Angers and J. Caron, Plant-induced changes in soil structure: Processes and feedbacks, Biogeochemistry 42 (1/2) (1998), pp. 55–72. doi:10.1023/A:1005944025343.
  • J. DeJong, M. Tibbett, and A. Fourie, Geotechnical systems that evolve with ecological processes, Environ. Earth. Sci. 73 (3) (2015), pp. 1067–1082. Springer. doi:10.1007/s12665-014-3460-x.
  • L. Jassogne, A. McNeill, and D. Chittleborough, 3D-visualization and analysis of macro- and meso-porosity of the upper horizons of a sodic, texture-contrast soil, Eur. J. Soil. Sci. 58 (3) (2007), pp. 589–598. John Wiley & Sons, Ltd. doi:10.1111/J.1365-2389.2006.00849.X
  • A. Proteau, M. Guittonny, B. Bussière, and A. Maqsoud, Oxygen migration through a cover with capillary barrier effects colonized by roots, Can. Geotech. J. 57 (12) (2020b), pp. 1903–1914. doi:10.1139/cgj-2019-0515.
  • C.H. Benson, A. Sawangsuriya, B. Trzebiatowski, and W.H. Albright, Postconstruction changes in the hydraulic properties of water balance cover soils, J. Geotech. Geoenviron. Eng. 133 (4) (2007), pp. 349–359. American Society of Civil Engineers. doi:10.1061/(ASCE)1090-0241(2007)133:4(349).
  • I. Demers, M. Benzaazoua, M. Mbonimpa, M. Bouda, D. Bois, and M. Gagnon, Valorisation of acid mine drainage treatment sludge as remediation component to control acid generation from mine wastes, part 1: Material characterization and laboratory kinetic testing, Miner. Eng. 76 (2015), pp. 109–116. Elsevier Ltd doi:10.1016/j.mineng.2014.10.015.
  • Government of Canada, National climate archives. 2024. http://climate.weather.gc.ca/.
  • M. Rompre and D. Carrier. 1997. Étude pédologique des sols défrichés de l’Abitibi Temiscamingue.
  • Agriculture and Agri-Food Canada, The Canadian System of Soil Classification, 3rd, 1998.
  • M. Guittonny-Larchevêque, and S. Lortie, Above- and Belowground Development of a fast-growing willow planted in acid-generating mine technosol, J. Environ. Qual. 46(6) (2017, The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc), pp. 1462–1471. doi:10.2134/jeq2017.03.0128.
  • B. Bussière, M. Aubertin, M. Mbonimpa, J. Molson, and R.P. Chapuis, Field experimental cells to evaluate the hydrogeological behaviour of oxygen barriers made of silty materials, Can. Geotech. J. 44 (3) (2007), pp. 245–265. doi:10.1139/T06-120.
  • J.A. Burger and C.E. Zipper, How to restore forests on surface-mined land, Virginia Coop. Ext. Serv 460 (2011), pp. 1–20.
  • M. Mbonimpa, M. Aubertin, R.P. Chapuis, and B. Bussière, Practical pedotransfer functions for estimating the saturated hydraulic conductivity, Geotech. Geol. Eng. 20 (3) (2002), pp. 235–259. Springer. doi:10.1023/A:1016046214724.
  • M.T. Van Genuchten, F.J. Leij, S.R. Yates, and J.R. Williams, The RETC Code for Quantifying Hydraulic Functions of Unsaturated Soils, U.S. Department of Agriculture, Agricultural Research Service, Riverside, USA, 1991.
  • M. Aubertin, M. Aachib, M. Monzon, A.M. Joanes, B. Bussière, and R.P. Chapuis, Étude en laboratoire sur l’efficacité des barrières de recouvrement construites à partir de résidus miniers, NEDEM/MEND, Ottawa, Canada, 1997.
  • M. Aubertin, M. Mbonimpa, B. Bussière, and R.P. Chapuis, A model to predict the water retention curve from basic geotechnical properties, Can. Geotech. J. 40 (6) (2003), pp. 1104–1122. NRC Research Press Ottawa, Canada. doi:10.1139/t03-054.
  • B. Bussière, Étude du comportement hydrique de couvertures avec effets de barrières capillaires inclinées à l’aide de modélisations physiques et numériques, École Polytechnique De Montréal, Montreal, Canada, 1999.
  • T. Pabst, Étude expérimentale et numérique du comportement hydrogéochimique de recouvrements placés sur des résidus sulfureux partiellement oxydés, École Polytechnique De Montréal, Montreal, Canada, 2011.
  • I. Demers, B. Bussière, M. Rousselle, M. Aubertin, T. Pabst, and R. Lacroix, Laboratory evaluation of reclamation scenarios for the spillage areas of the abandoned Manitou site using goldex tailings, in 23rd World Min. Congr, Montreal, Canada, 2013.
  • M.-P. Ethier, Évaluation De La Performance D’Un Système De Recouvrement Monocouche Avec Nappe Surélevée Pour La Restauration D’Un Parc À Résidus Miniers Abandonné, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Canada, 2018.
  • A. Jerbi, W.G. Nissim, R. Fluet, and M. Labrecque, Willow root development and morphology changes under different irrigation and fertilization regimes in a vegetation filter, BioEnergy Res. 8, 2 (2015), pp. 775–787. doi:10.1007/s12155-014-9550-5
  • K.G. Cabugao, D. Yaffar, N. Stenson, J. Childs, J. Phillips, M.A. Mayes, X. Yang, D.J. Weston, and R.J. Norby, Bringing function to structure: Root–soil interactions shaping phosphatase activity throughout a soil profile in Puerto rico, Ecol. Evol. 11, 3 (2021), pp. 1150–1164. doi:10.1002/ece3.7036
  • H.J. Schenk and R.B. Jackson, Rooting depths, lateral root spreads and below‐ground/above‐ground allometries of plants in water‐limited ecosystems, J. Ecol. 90 (3) (2002), pp. 480–494. John Wiley & Sons, Ltd. doi:10.1046/j.1365-2745.2002.00682.x
  • G. Bodner, A. Mentler, and K. Keiblinger, Plant roots for sustainable soil structure management in cropping systems, Root Syst. Sustain. Agric. Intensif. 2018 (2021), pp. 45–90. doi:10.1002/9781119525417.ch3.
  • Y. Chen, Y. Gao, C.W.W. Ng, and H. Guo, Bio-improved hydraulic properties of sand treated by soybean urease induced carbonate precipitation and its application part 1: Water retention ability, Transp. Geotech. 27 (2021), pp. 100489. Elsevier Ltd doi:10.1016/j.trgeo.2020.100489.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.