76
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Case studies of assessment of human health risks after the dam failures of the Córrego do Feijão Mine and Fundão in Brazil

, , &
Pages 534-548 | Received 12 Jul 2023, Accepted 09 Mar 2024, Published online: 16 Mar 2024

References

  • E. Focus, M.J. Rwiza, N.K. Mohammed, and F.P. Banzi, Health risk assessment of trace elements in soil for people living and working in a mining area, J Environ Public Health. (2021), 1–10. doi:10.1155/2021/9976048.
  • A.C. Buch, J.C. Niemeyer, E.D. Marques, and E.V. Silva-Filho, Ecological risk assessment of trace metals in soils affected by mine tailings. J. Hazar. Mater. (2021), 403(5), 1–30. doi:10.1016/j.jhazmat.2020.123852.
  • A.C. Buch, D.B. Sims, M.E.F. Correia, E.D. Marques, and E.V. Silva-Filho, Preliminary assessment of potential pollution risks in soils: Case study of the Córrego do feijão mine dam failure (Brumadinho, Minas Gerais, Brazil). Int. J. Min. Reclam. Environ. (2023), 1–22. doi:10.1080/17480930.2023.2226474.
  • D. Kossoff, W.E. Dubbin, M. Alfredsson, S.J. Edwards, M.G. Macklin, and H. Hudson-Edwards, Mine tailings dams: Characteristics, failure, environmental impacts, and remediation, Appl Geochem. 51 (2014), pp. 229–246. doi:10.1016/j.apgeochem.2014.09.010.
  • M. Armstrong, R. Petter, and C. Petter, Why have so many tailings dams failed in recent years?, Resour. Policy. 63 (2019), pp. 1–10. doi:10.1016/j.resourpol.2019.101412.
  • M. Forget, M. Rossi, Mining region value and vulnerabilities: Evolutions over the mine life cycle, Extr. Ind. Soc. 8, 1 (2021), pp. 176–187. doi:10.1016/j.exis.2020.07.010.
  • T.E. Martin and M.P. Davies, “Trends in the stewardship of tailings dams”. 2000.https://web.archive.org/web/20111121054450/http://www.infomine.com/publications/docs/Martin2000.pdf. Accessed 10 January 2023.
  • S. Azam and Q. Li, “Tailings dam failures: A review of the last one hundred years”. Geotech. News. (2010), 28, 50–54.
  • N.M. Rana, N. Ghahramani, S.G. Evans, S. Mcdougall, A. Small, and W.A. Take, Catastrophic mass flows resulting from tailings impoundment failures, Eng. Geol. 292 (2021), pp. 1–10. doi:10.1016/j.enggeo.2021.106262.
  • K. Islam and S. Murakami, Global-scale impact analysis of mine tailings dam failures: 1915-2020. Glob Environ Change. (2021), 70, 1–10. doi:10.1016/j.gloenvcha.2021.102361.
  • Z. Xu, L. Ito, and L.D. Muchangos, Health risk assessment and cost–benefit analysis of agricultural soil remediation for tailing dam failure in Jinding mining area, SW China. Environ. Geochem. Health. (2022). doi:10.1007/s10653-022-01445-z.
  • Z. Lyu, J. Chai, Z. Xu, Y. Qin, and J. Cao, A comprehensive review on reasons for tailings dam failures based on case history. Adv. Civ. Eng. (2019). doi:10.1155/2019/4159306.
  • L.F. Pereira, D.B. Cruz, and M.F. Guimarães, Impactos do rompimento da barragem de rejeitos de Brumadinho, Brasil: uma análise baseada nas mudanças de cobertura da terra. J. Environ. Anal. Prog. (2019), 4(2), 122–129. doi:10.24221/jeap.4.2.2019.2373.122-129.
  • M.R. Botelho, M.P. Faria, C.R. Mayr, and L.M.G. De Oliveira, Barragem de Fundão and Mina do Córrego do Feijão dams rupture in Minas Gerais, Brazil: untended organizational decisions and unlearned lessons. Rev. Bras. Saude. Ocup. (2021), 46, 1–11. doi:10.1590/2317-6369000018519.
  • M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair, and M. Sadeghi, Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. (2021), 13, 1–10. doi:10.3389/fphar.2021.643972.
  • CPRM and ANA - Companhia de Pesquisa de Recursos Minerais-Serviço Geológico do Brasil and Agência Nacional de Águas. Monitoramento especial da bacia do rio Doce. Relatório 1-Acompanhamento da onda de cheia. 2015, CPRM, Belo Horizonte- MG, Dezembro. www.cprm.org.br/. Accessed 10 February 2023. (in Portuguese).
  • CPRM and ANA - Companhia de Pesquisa de Recursos Minerais-Serviço Geológico do Brasil and Agência Nacional de Águas. Monitoramento especial da bacia do rio Doce. Relatório 2-Geoquímica. 2015. CPRM, Belo Horizonte-MG, Dezembro. www.cprm.org.br. Accessed 10 February 2023. (in Portuguese).
  • CPRM - Companhia de Pesquisa de Recursos Minerais-Serviço Geológico do Brasil, Superintendência Regional de Belo Horizonte. Monitoramento especial da bacia do Rio Paraopeba - Relatório 01: Monitoramento Hidrológico Sedimentométrico, 2019. http://www.cprm.gov.br/sace/conteudo/paraopeba/RT_01_2019_PARAOPEBA.pdf. Accessed 2 January 2023. (in Portuguese).
  • CPRM - Companhia de Pesquisa de Recursos Minerais-Serviço Geológico do Brasil, Superintendência Regional de Belo Horizonte. Monitoramento especial da bacia do Rio Paraopeba - Relatório 03: Monitoramento Geoquímico, 2019. http://www.cprm.gov.br/sace/conteudo/paraopeba/RT_03_2019_PARAOPEBA.pdf. Accessed 2 January 2023. (in Portuguese).
  • USEPA - U.S. Environmental Protection Agency, Superfund Public Health Evaluation Manual, Vol. 540, Office of Emergency and Remedial Response, Washington, DC, 1986, pp. 1–86.
  • USEPA - U.S. Environmental Protection Agency, Baseline human health risk assessment: Vasquez Boulevard and I-70 Superfund site, Denver, CO, U.S. Environmental Protection Agency, Washington, DC, 2001. http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1006STM.txt.
  • S. Banerjee, S. Ghosh, S. Jha, S. Kumar, G. Mondal, D. Sarkar, R. Datta, A. Mukherjee, P. Bhattacharyya, Assessing pollution and health risks from chromite mine tailings contaminated soils in India by employing synergistic statistical approaches, Science Of The Total Environment. 880, 1 (2023), pp. 1–18. doi:10.1016/j.scitotenv.2023.163228.
  • T.R. Saha, M.A.R. Khan, R. Kundu, J. Naime, K.M.R. Karim, and M. Hosna Ara, Heavy metal contaminations of soil in waste dumping and non-dumping sites in Khulna: Human health risk assessment, Results. Chem. 4 (2022), pp. 1–10. doi:10.1016/j.rechem.2022.100434.
  • Z. Li, Z. Ma, T.J. Van Der Kuijp, Z. Yuan, L. Huang, A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment, Science Of The Total Environment. 486, 469 (2014), pp. 843–853. doi:10.1016/j.scitotenv.2013.08.090.
  • USEPA - U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund, Vol I., Human Health Evaluation Manual (Part A), Office of Emergency and Remedial Response, Washington, DC, 1989.
  • USEPA - U.S. Environmental Protection Agency. Exposure Factors Handbook, Volume 1: General Factors, U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, 1997.
  • USEPA - U.S. Environmental Protection Agency, Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, Soild Waste and Emergency Response, OSWER, Washington, DC, 2002, pp. 4–24.
  • USEPA - U.S. Environmental Protection Agency. Exposure Factors Handbook, U.S. Environmental Protection Agency, Washington, D. C, 2011.
  • D.M. Cocãrţã, S. Neamtu, and A.M. Resetar Deac, Carcinogenic risk evaluation for human health risk assessment from soils contaminated with heavy metals. Int. J. Environ. Sci. Technol. (2016), 13, 2025–2036. doi:10.1007/s13762-016-1031-2.
  • COPAM - Conselho Estadual De Política Ambiental (Minas Gerais-Brazil), Deliberação Normativa COPAM nº 166, de 29 de junho de 2011. http://www.siam.mg.gov.br/sla/download.pdf?idNorma=18414. Accessed 7 January 2023. (in Portuguese).
  • CONAMA - Conselho Nacional do Meio Ambiente (Brazil), Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Resolução Conama n° 420, de 28 de dezembro de 2009 Brasília, DF. http://www.mma.gov.br/port/conama/res/res09/res42009.pdf. Accessed 28 December 2022. (in Portuguese).
  • CCME - Canadian Council of Ministers Of The Environment, Canadian Soil Quality Guidelines For The Protection Of Environmental And Human Health, 2007, pp.207.
  • C. Carlon, Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization. EUR 22805 EN, European Commission, Joint Research Centre, Ispra, Italy, 2007.
  • B.A. Zarcinas, P. Pongsakul, M.J. Mclaughlin, and G. Cozens, Heavy metals in soils and crops in Southeast Asia,thailand. Environ. Geochem. Health. (2004), 26, 359–371. 3–4 doi:10.1007/s10653-005-4670-7.
  • MEF - Ministry of the Environment, Finland, Government decree on the assessment of soil contamination and remediation needs (214/2007, March 1), 2007, pp. 167.
  • G. Tóth, T. Hermann, M.R. Da Silva, and L. Montanarella, Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Inter. (2016), 88, 299–309. doi:10.1016/j.envint.2015.12.017.
  • F.R. Segura, E.A. Nunes, F.P. Paniz, A.C.C. Paulelli, G.B. Rodrigues, G.U.L. Braga, W.R. Pedreira Filho, J.R.F. Barbosa, G. Cercjiaro, F.F. Silva, and B.L. Batista, Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environ. Poll. (2016), 218, 813–825. doi:10.1016/j.envpol.2016.08.005.
  • C.S. Vergilio, D. Lacerda, B.C.V. Oliveira, E. Sartori, G.M. Campos, A.L.S. Pereira, D.B. Aguiar, T.S. Souza, M.G. Almeida, F. Thompson, and C.E. Rezende, Metal concentrations and biological effects from one of the largest mining disasters in the world (brumadinho, Minas Gerais, Brazil). Sci. Report. (2020), 10, 5936. doi:10.1038/s41598-020-62700-w. 1
  • F. Thompson, B.C. De Oliveira, M.C. Cordeiro, B.P. Masi, T.P. Rangel, P. Paz, T. Freitas, G. Lopes, B.S. Silva, A.S. Cabral, M. Soares, D. Lacerda, C. Dos Santos Vergilio, M. Lopes-Ferreira, C. Lima, C. Thompson, and C.E. De Rezende, Severe impacts of the brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River. Science Of The Total Environment. (2020) 25, 705, 1–10. doi:10.1016/j.scitotenv.2019.135914.
  • H.E. Teramoto, H. Gemeiner, M.B.T. Zanatta, A.A. Menegário, and H.K. Chang, Metal speciation of the Paraopeba river after the brumadinho dam failure. Science Of The Total Environment. (2021), 757, 1–17. doi:10.1016/j.scitotenv.2020.143917.
  • F.A.L. Pacheco, R.F. Valle Junior, M.M.A.P. de Silva, T.C.T. Pissara, M.C. De Melo, C.A. Valera, L.F.S. Fernandes, Prognosis of metal concentrations in sediments and water of Paraopeba River following the collapse of B1 tailings dam in Brumadinho (Minas Gerais, Brazil), Science Of The Total Environment. 809, 25 (2022), pp. 1–10. doi:10.1016/j.scitotenv.2021.151157
  • Y. Faiz, N. Siddique, and M. Tufail, Pollution level and health risk assessment of road dust from an expressway. J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng. (2012), 47, 818–829. doi:10.1080/10934529.2012.664994.
  • X. Qing, Z. Yutong, and L. Shenggao, Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotox. Environ. Saf. (2015), 120, 377–385. doi:10.1016/j.ecoenv.2015.06.019.
  • H. Liu, A. Probst, and B. Liao, Metal contamination of soils and crops affected by the chenzhou lead/zinc mine spill (Hunan, China). Science Of The Total Environment. (2005), 339, 153–166. doi:10.1016/j.scitotenv.2004.07.030.
  • C. Qu, K. Sun, S. Wang, L. Huang, and J. Bi, Monte Carlo simulation-based health risk assessment of heavy metal soil pollution: A case study in the Qixia Mining Area, China. H.E.R.A. (2012), 18(4), 733–750, doi:10.1080/10807039.2012.688697.
  • Y. Cao, Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications. Front Med. (2015), 9(3), 261–274. doi:10.1007/s11684-015-0406-y.
  • L.L. Da Silva-Rego, L.A. Almeida, and J. Gasparotto, Toxicological effects of mining hazard elements. Ener. Geosci. (2022), 3, 255–262. doi:10.1016/j.engeos.2022.03.003.
  • A.L. Braga, L.A. Pereira, M. Procópio, P.A.D. André, and P.H. Saldiva, Associação entre poluição atmosférica e doenças respiratórias e cardiovasculares na cidade de Itabira, Minas Gerais, Brasil. Cad. Saúde Pública. (2007), 23, 570–578. doi:10.1590/s0102-311x2007001600017.
  • J. Carré, N. Gatimel, J. Moreau, J. Parinaud, and R. Léandri, Does air pollution play a role in infertility?: A systematic review. Environ. Health (2017), 16(1), 1–16. doi:10.1186/s12940-017-0291-8.
  • L. Espitia-Perez, J. da Silva, P. Espitia-Perez, H. Brango, S. Salcedo-Arteaga, L.S. Hoyos-Giraldo, C.T. de Souza, J.F. Dias, D. Agudelo-Castaneda, A.V. Toscano, M. Gómez-Pérez, and J.A.P. Henriques, Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM10 and PM2. 5 levels, Ecotoxicol. Environ. Saf. 148 (2018), pp. 453–466. doi:10.1016/j.ecoenv.2017.10.044.
  • A.M. Yang, K. Lo, T.Z. Zheng, J.L. Yang, Y.N. Bai, Y.Q. Feng, N. Cheng, S.M. Liu, Environmental heavy metals and cardiovascular diseases: status and Future direction, Chronic Dis. Transl. Med. 6, 4 (2020), pp. 251–259. doi:10.1016/j.cdtm.2020.02.005.
  • R.B. Davila, M.P.F. Fontes, A.A. Pacheco, and M.S. Ferreira, Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Science Of The Total Environment. (2020), 709, 1–10. doi:10.1016/j.scitotenv.2019.136151.
  • N. Adimalla, Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environ. Geochem. Health. (2020), 42, 59–75. doi:10.1007/s10653-019-00270-1.
  • P. Kumar, A. Gacem, M.T. Ahmad, V.K. Yadav, S. Singh, K.K. Yadav, M.M. Alam, V. Dawane, S. Piplode, P. Maurya, Y. Ahn, B.H. Jeon, and M.M.S. Cabral-Pinto, Environmental and human health implications of metal(loid)s: Source identification, contamination, toxicity, and sustainable clean-up technologies. Front. Environ. Sci. (2022), 10, 949581. doi:10.3389/fenvs.2022.949581.
  • enHealth guidance 2012 Guidelines for Assessing Human Health Risks from Environmental Hazards. Canberra: ACT, 2012p. 131 p. ISBN: 978-1-74241-766-0. https://www.health.gov.au/sites/default/files/documents/2022/07/enhealth-guidance-guidelines-for-assessing-human-health-risks-from-environmental-hazards.pdf.
  • C.F. Isley, K.L. Fry, X. Liu, M. Filippelli, J.A. Entwistle, A.P. Martin, M. Kah, D. Meza-Figueroa, J.T. Shukle, K. Jabeen, A.O. Famuyiwa, L. Wu, N. Sharifi-Soltani, I. Doyi, A. Argyraki, K. Fai Ho, C. Dong, P. Gunkel-Grillon, C.M. Aelion, and M.P. Taylor, International analysis of sources and human health risk associated with trace metal contaminants in residential indoor dust, Environ. Sci. Technol. 56 (2) (2022), pp. 1053–1068. doi:10.1021/acs.est.1c04494.
  • H. Li and H. Ji, Chemical speciation, vertical profile and human health risk assessment of heavy metals in soils from coal-mine brownfield, Beijing, China, J. Geochem. Explor. 183 (2017), pp. 22–32. part A doi:10.1016/j.gexplo.2017.09.012.
  • A.Y. Gore, M. Genisoglu, Y. Kazanci, and S.C. Sofuoglu, Countrywide spatial variation of potentially toxic element contamination in soils of Turkey and assessment of population health risks for nondietary ingestion, ACS. Omega. 7 (41) (2022), pp. 36457–36467. doi:10.1021/acsomega.2c04261.
  • A. Parviainen, A. Vázquez-Arias, J.P. Arrebola, and F.J. Maryín-Peinado, Human health risks associated with urban soils in mining areas, Environ. Res. 206 (2022), pp. 112514. doi:10.1016/j.envres.2021.112514.
  • A. Kabata-Pendias, Trace Elements in Soils and Plants, 4th ed., CRC Press, Taylor and Francis Group, Boca Raton, 2011, p. 534. doi:10.1201/b10158.
  • Y. Deng, L. Jiang, L. Xu, X. Hao, S. Zhang, M. Xu, P. Zhu, S. Fu, Y. Liang, H. Yin, X. Liu, L. Bai, H. Jiang, and H. Liu, Spatial distribution and risk assessment of heavy metals in contaminated paddy fields-A case study in Xiangtan city, southern China, Ecotox. Environ. Saf. 171 (2019), pp. 281–289. doi:10.1016/j.ecoenv.2018.12.060.
  • J. Lewis, J. Hoover, and D. Mackenzie, Mining and environmental health disparities in native American communities. Curr. Environ. Health. Rep. (2017), 4, 130–141. doi: 10.1007/s40572-017-0140-5.
  • V.M. Ngole-Jeme, P. Fantke, and J. Paz-Ferreiro, Ecological and human health risks associated with abandoned gold mine tailings contaminated soil, PloS. One. 12 (2) (2017), pp. 1–20. doi:10.1371/journal.pone.0172517.
  • Z.M. Zhu, S.Q. Xiong, J.B. Chen, B. Shen, J.Y. Zhou, and F.Y. Liu, Heavy metal concentrations of soils in Lala copper mine and heavy metal contamination. Earth Environ. (2007), 35, 261–266.
  • X.W. Zhang, L.S. Yang, Y.H. Li, H.R. Li, W.Y. Wang, and B.X. Ye, Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ. Monit. Assess. (2012), 184, 2261–2273. doi:10.1007/s10661-011-2115-6.
  • F. Gil, L.F. Capitán-Vallvey, E. De Santiago, J. Pla, A. Ballesta, A.F. Hernández, M. Gutiérrez-Bedmar, J. Fernández-Crehuet, J. Gómez, O. López-Guarnido, L. Rodrigo, and E. Villanueva, Heavy metal concentrations in the general population of Andalusia, south of Spain. A comparison with the population within the area of influence of Aznalcóllar mine spill (SW Spain). Science Of The Total Environment. (2006), 372, 49–57. 1 doi:10.1016/j.scitotenv.2006.08.004.
  • N. Adimalla and H. Wang, Distribution, contamination, and health risk assessment of heavy metals in surface soils from northern telangana, India. Arabian J. Geosc. (2018), 11, 684–694. doi:10.1007/s12517-018-4028-y.
  • A.C.C. Paulelli, C.A. Cesila, P.P. Devóz, S.R. de Oliveira, J.P.B. Ximenez, W.R. Pedreira Filho, and J.R.F. Barbosa, Fundão tailings dam failure in Brazil: Evidence of a population exposed to high levels of Al, As, Hg and Ni after a human biomonitoring study. Environ. Res. (2022), 205, 1–8. doi:10.1016/j.envres.2021.112524.
  • FGV - Fundação Getulio Vargas, Diagnóstico em Saúde dos Municípios Atingidos pelo Rompimento da Barragem de Fundão, Mariana (MG), em 5 de Novembro de 2015: Estimativa de Anos de Vida Perdidos por Incapacitação, Rio de Janeiro; São Paulo. 1 (2021), pp. 92.
  • P.J. Mota, H.G.A. Alonzo, L.C. André, V.M. Câmara, D. Campolina, and A.S.E. Santos, Prevalência dos níveis de metais acima dos valores de referência em município atingido pelo rompimento de barragem de rejeitos da mineração: Projeto Saúde Brumadinho Ver. Bras. Epidemiol, 2022, 25, e220014.supl.2. doi:10.1590/1980-549720220014.supl.2.1.
  • G.P. Bienert and M.J. Tamás, Molecular mechanisms of metalloid transport, toxicity and tolerance, Front. Cell Dev. Biol. 6 (2018), pp. 99. doi:10.3389/fcell.2018.00099.
  • G. Rehman, I. Khattak, M. Hamayun, A. Rahman, M. Haseeb, M. Umar, S. Ali, I. Iftikhar, W.A. Shams, and R. Pervaiz, Impacts of mining on local fauna of wildlife in District Mardan and District Mohmand Khyber Pakhtunkhwa Pakistan. Braz. J. Biol. (2024), 84, 1–8. doi:10.1590/1519-6984.251733.
  • L.S. Balistrieri, C.A. Mebane, S.E. Cox, H.J. Puglis, R.D. Calfee, and N. Wang, Potential toxicity of dissolved metal mixtures (cd, Cu, Pb, Zn) to early life stage white sturgeon (acipenser transmontanus) in the upper Columbia River, Washington, United States, Environ. Sci. Technol. 52, 17 (2018), pp. 9793–9800. doi:10.1021/acs.est.8b02261.
  • C. Ding, J. Chen, F. Zhu, L. Chai, Z. Lin, K. Zhang, and Y. Shi, Biological toxicity of heavy metal(loid)s in natural environments: From microbes to humans. Frontiers Environ. Sci. (2022), 1, 1–23. doi:10.3389/fenvs.2022.920957.
  • L.V. Tibane and D. Mamba, Ecological risk of trace metals in soil from gold mining region in South Africa, J. Hazard. Mater. Adv. 7 (2022), pp. 1–10. doi:10.1016/j.hazadv.2022.100118.
  • USEPA - U.S. Environmental Protection Agency, Guidelines for carcinogen risk assessment. Federal Register, 2005, 166 pp. https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment.
  • IARC - International Agency for Research on Cancer. IARC Monographs On The Evaluation Of Carcinogenic Risk To Humans. 2018. https://monographs.iarc.fr/agents-classified-by-the-iarc/. Accessed 3 July 2023.
  • ATSDR - Agency for toxic substances and disease registry. Toxic Substances Portal. Atlanta: ATSDR; 2011-2018. https://www.atsdr.cdc.gov/substances/indexAZ.asp#A. Accessed 3 July 2023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.