45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machine learning for open-pit mining: a systematic review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 22 Sep 2023, Accepted 28 May 2024, Published online: 20 Jun 2024

References

  • Trading Economics, Eur. Union Min. Prod. (2022). https://tradingeconomics.com/european-union/mining-production (Accessed: October 24, 2022).
  • Trading Economics, GDP from Min. | Eur. (2022). https://tradingeconomics.com/country-list/gdp-from-mining?continent=europe (Accessed: October 24, 2022).
  • X. Peng, R. Shoumai, Global Mining Development Report 2020-2021, 2021
  • Y. Babets, Y. Terekhov, T. Mormul, I. Melnikova, V. Komirna, Environmental and economic assessment of the possibilities to increase the land preservation level in terms of open-pit mining, E3S Web Conf. 280 (2021) 11022. 10.1051/e3sconf/202128011002.
  • R. V. Ramani, Surface mining technology: Progress and prospects, Procedia Eng. 46 (2012) 9–21. 10.1016/j.proeng.2012.09.440.
  • C. Mestanza-Ramón, J. Cuenca-Cumbicus, G. D’orio, J. Flores-Toala, S. Segovia-Cáceres, A. Bonilla-Bonilla, S. Straface, Gold mining in the Amazon region of ecuador: History and a review of its socio-environmental impacts, Land 11 (2022) 1–22. 10.3390/land11020221.
  • A.L. Samuel, Eight-move opening utilizing generalization learning. (See Appendix B, Game G-43.1 Some Studies in Machine Learning Using the Game of Checkers, IBM J. (1959) 210–229. 10.1147/rd.33.0210.
  • A.S. Rathore, S. Nikita, G. Thakur, S. Mishra, Artificial intelligence and machine learning applications in biopharmaceutical manufacturing, Trends Biotechnol. (2022) 1–14. 10.1016/j.tibtech.2022.08.007.
  • M. Duquesnoy, C. Liu, D.Z. Dominguez, V. Kumar, E. Ayerbe, A.A. Franco, Machine learning-assisted multi-objective optimization of battery manufacturing from synthetic data generated by physics-based simulations, Energy Storage Mater. 56 (2023) 50–61. 10.1016/j.ensm.2022.12.040.
  • S. Feng, H. Sun, X. Yan, H. Zhu, Z. Zou, S. Shen, Dense reinforcement learning for safety validation of autonomous vehicles, Nature 615 (2023) 620–627. 10.1038/s41586-023-05732-2.
  • Y. Liu, X. Zuo, G. Ai, Y. Liu, A reinforcement learning-based approach for online bus scheduling, Knowledge-Based Syst. 271 (2023) 110584. 10.1016/j.knosys.2023.110584.
  • W. Pan, S.Q. Liu, Deep reinforcement learning for the dynamic and uncertain vehicle routing problem, Appl. Intell. 53 (2023) 405–422. 10.1007/s10489-022-03456-w.
  • Y. Ketkar, S. Gawade, A decision support system for selecting the most suitable machine learning in healthcare using user parameters and requirements, Healthc. Anal. 2 (2022) 100117. 10.1016/j.health.2022.100117.
  • M. Zini, C. Carcasci, Machine learning-based monitoring method for the electricity consumption of a healthcare facility in Italy, Energy 262 (2023) 125576. 10.1016/j.energy.2022.125576.
  • S. Kim, S. Lee, Nonlinear relationships and interaction effects of an urban environment on crime incidence : Application of urban big data and an interpretable machine learning method, Sustain. Cities Soc. 91 (2023) 104419. 10.1016/j.scs.2023.104419.
  • X. Zhang, L. Yang, R. Luo, H.Y. Wu, J. Xu, C. Huang, Y. Ruan, X. Zheng, J. Yao, Estimating the outdoor environment of workers’ villages in East China using machine learning, Build. Environ. 226 (2022) 109738. 10.1016/j.buildenv.2022.109738.
  • D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, D. Hassabis, A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play, Science (80-.). 362 (2018) 1140–1144. 10.1126/science.aar6404.
  • M.R. Dobbelaere, P.P. Plehiers, R. Van de Vijver, C. V. Stevens, K.M. Van Geem, Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats, Engineering 7 (2021) 1201–1211. 10.1016/j.eng.2021.03.019.
  • A. Thebelt, J. Wiebe, J. Kronqvist, C. Tsay, R. Misener, Maximizing information from chemical engineering data sets: Applications to machine learning, Chem. Eng. Sci. 252 (2022) 117469. 10.1016/j.ces.2022.117469.
  • R. Aworka, L.S. Cedric, W.Y.H. Adoni, J.T. Zoueu, F.K. Mutombo, C.L.M. Kimpolo, T. Nahhal, M. Krichen, Agricultural decision system based on advanced machine learning models for yield prediction: Case of East African countries, Smart Agric. Technol. 2 (2022) 100048. 10.1016/j.atech.2022.100048.
  • G. Bai, T. Xu, Coal mine safety evaluation based on machine learning: A BP neural network model, Comput. Intell. Neurosci. 2022(2022) 1–9. 10.1155/2022/5233845.
  • T. D’Angelo, M. Mendes, B. Keller, R. Ferreira, S. Delabrida, R. Rabelo, H. Azpurua, A. Bianchi, Deep learning-based object detection for digital inspection in the mining industry, Proc. - 18th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2019 (2019) 633–640. 10.1109/ICMLA.2019.00116.
  • B. Mahesh, Machine learning algorithms - A review, Int. J. Sci. Res. 9 (2020) 381–386. 10.21275/ART20203995.
  • R. Noriega, Y. Pourrahimian, A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning, Resour. Policy 77 (2022) 102727. 10.1016/j.resourpol.2022.102727.
  • M. Naeem, S.T.H. Rizvi, A. Coronato, A gentle introduction to reinforcement learning and its application in different fields, IEEE Access 8 (2020) 209320–209344. 10.1109/ACCESS.2020.3038605.
  • W.A. Khan, S.H. Chung, H.L. Ma, S.Q. Liu, C.Y. Chan, A novel self-organizing constructive neural network for estimating aircraft trip fuel consumption, Transp. Res. Part E 132 (2019) 72–96. 10.1016/j.tre.2019.10.005.
  • D. Zhang, X. Han, C. Deng, Review on the research and practice of deep learning and reinforcement learning in smart grids, CSEE J. Power Energy Syst. 4 (2018) 362–370. 10.17775/cseejpes.2018.00520.
  • P. Hernandez-Leal, B. Kartal, M.E. Taylor, A survey and critique of multiagent deep reinforcement learning, Auton. Agent. Multi. Agent. Syst. 33 (2019) 750–797. 10.1007/s10458-019-09421-1.
  • J.L.V. Mariz, M.M. Badiozamani, L. de Peroni, R.M. de A. Silva, A critical review of bench aggregation and mining cut clustering techniques based on optimization and artificial intelligence to enhance the open-pit mine planning, Eng. Appl. Artif. Intell. 133 (2024) 108334. 10.1016/j.engappai.2024.108334.
  • P. Chimunhu, E. Topal, A.D. Ajak, W. Asad, A review of machine learning applications for underground mine planning and scheduling, Resour. Policy 77 (2022) 102693. 10.1016/j.resourpol.2022.102693.
  • D. Jung, Y. Choi, Systematic review of machine learning applications in mining: Exploration, exploitation, and reclamation, Minerals 11 (2021) 148. 10.3390/min11020148.
  • N. Parvez Farazi, B. Zou, T. Ahamed, L. Barua, Deep reinforcement learning in transportation research: A review, Transp. Res. Interdiscip. Perspect. 11 (2021) 100425. 10.1016/j.trip.2021.100425.
  • Y. Fu, C. Aldrich, Deep learning in mining and mineral processing operations: A review, IFAC-PapersOnLine 53 (2020) 11920–11925. 10.1016/j.ifacol.2020.12.712.
  • J.T. McCoy, L. Auret, Machine learning applications in minerals processing: A review, Miner. Eng. 132 (2019) 95–109. 10.1016/j.mineng.2018.12.004.
  • A. Salazar-Moya, M. V. Garcia, Lot streaming in different types of production processes: A prisma systematic review, Designs 5 (2021) 67. 10.3390/designs5040067.
  • A. Kamel, M. Elwageeh, S. Bonduà, M. Elkarmoty, Evaluation of mining projects subjected to economic uncertainties using the Monte Carlo simulation and the binomial tree method: Case study in a phosphate mine in Egypt, Resour. Policy 80 (2023) 103266. 10.1016/j.resourpol.2022.103266.
  • K. Zhang, X. Yang, T. Wang, J. Thé, Z. Tan, H. Yu, Multi-step carbon price forecasting using a hybrid model based on multivariate decomposition strategy and deep learning algorithms, J. Clean. Prod. 405 (2023) 136959. 10.1016/j.jclepro.2023.136959.
  • T. Shi, C. Li, W. Zhang, Y. Zhang, Forecasting on metal resource spot settlement price: New evidence from the machine learning model, Resour. Policy 81 (2023) 103360. 10.1016/j.resourpol.2023.103360.
  • J. Zhao, S. Hosseini, Q. Chen, D. Jahed Armaghani, Super learner ensemble model: A novel approach for predicting monthly copper price in future, Resour. Policy 85 (2023) 103903. 10.1016/j.resourpol.2023.103903.
  • S. Das, T.P. Sahu, R.R. Janghel, Oil and gold price prediction using optimized fuzzy inference system based extreme learning machine, Resour. Policy 79 (2022) 103109. 10.1016/j.resourpol.2022.103109.
  • H. Zhang, H. Nguyen, D.A. Vu, X.N. Bui, B. Pradhan, Forecasting monthly copper price: A comparative study of various machine learning-based methods, Resour. Policy 73 (2021) 102189. 10.1016/j.resourpol.2021.102189.
  • H. Zhang, H. Nguyen, X.N. Bui, B. Pradhan, N.L. Mai, D.A. Vu, Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms, Resour. Policy 73 (2021) 102195. 10.1016/j.resourpol.2021.102195.
  • P. Du, J. Guo, S. Sun, S. Wang, J. Wu, Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm, Resour. Policy 74 (2021) 102335. 10.1016/j.resourpol.2021.102335.
  • X. Zheng, H. Nguyen, X.N. Bui, Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model, Resour. Policy 74 (2021) 102300. 10.1016/j.resourpol.2021.102300.
  • H. Guo, H. Nguyen, D.A. Vu, X.N. Bui, Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach. Resour Policy 74 (2021) 101474. 10.1016/j.resourpol.2019.101474.
  • H. Zhang, H. Nguyen, X.N. Bui, T. Nguyen-Thoi, T.T. Bui, N. Nguyen, D.A. Vu, V. Mahesh, H. Moayedi, Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm, Resour. Policy 66 (2020) 101604. 10.1016/j.resourpol.2020.101604.
  • H. Nourali, M. Osanloo, A regression-tree-based model for mining capital cost estimation, Int. J. Mining, Reclam. Environ. 34 (2020) 88–100. 10.1080/17480930.2018.1510300.
  • H. Nourali, M. Osanloo, Mining capital cost estimation using Support Vector Regression (SVR), Resour. Policy 62 (2019) 527–540. 10.1016/j.resourpol.2018.10.008.
  • G. Franco-Sepulveda, C. Campuzano, C. Pineda, NPV risk simulation of an open pit gold mine project under the O’Hara cost model by using GAs, Int. J. Min. Sci. Technol. 27 (2017) 557–565. 10.1016/j.ijmst.2017.03.004.
  • E. Brenjkar, E.B. Delijani, Computational prediction of the drilling rate of penetration (ROP): A comparison of various machine learning approaches and traditional models, J. Pet. Sci. Eng. 210 (2022) 110033. 10.1016/j.petrol.2021.110033.
  • A. Buelga Díaz, I. Diego Álvarez, C. Castañón Fernández, A. Krzemień, F.J. Iglesias Rodríguez, Calculating ultimate pit limits and determining pushbacks in open-pit mining projects, Resour. Policy 72 (2021) 102058. 10.1016/j.resourpol.2021.102058.
  • D.S. Hochbaum, A. Chen, Performance analysis and best implementations of old and new algorithms for the open-pit mining problem, Oper. Res. 48 (2000) 894–914. 10.1287/opre.48.6.894.12392.
  • G.T. Nwaila, S.E. Zhang, J.E. Bourdeau, H.E. Frimmel, Y. Ghorbani, Spatial interpolation using machine learning: from patterns and regularities to block models, Springer US, 2024. 10.1007/s11053-023-10280-7.
  • S. Avalos, J.M. Ortiz, Multivariate Geostatistical Simulation and Deep Q-Learning to optimize mining decisions, Math. Geosci. 55 (2023) 673–692. 10.1007/s11004-023-10049-x.
  • J. Qin, S. Du, J. Ye, R. Yong, SVNN-ANFIS approach for stability evaluation of open-pit mine slopes, Expert Syst. Appl. 198 (2022) 116816. 10.1016/j.eswa.2022.116816.
  • J. Williams, J. Singh, M. Kumral, J. Ramirez Ruiseco, Exploring deep learning for dig-limit optimization in open-pit mines, Nat. Resour. Res. 30 (2021) 2085–2101. 10.1007/s11053-021-09864-y.
  • A. Quelopana, A. Navarra, Integration of strategic open-pit mine planning into hierarchical artificial intelligence, J. South. African Inst. Min. Metall. 121 (2021) 643–652. 10.17159/2411-9717/1367/2021.
  • T.J. Mbah, H. Ye, J. Zhang, M. Long, Implementation of statistical analysis to determine optimum ultimate pit, Open J. Geol. 10 (2020) 1262–1279. 10.4236/ojg.2020.1012063.
  • J. Zhou, E. Li, S. Yang, M. Wang, X. Shi, S. Yao, H.S. Mitri, Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories, Saf. Sci. 118 (2019) 505–518. 10.1016/j.ssci.2019.05.046.
  • A. Agosti, S. Utili, C. Valderrama, G. Albornoz, Optimal pitwall profiles to maximise the overall slope angle of open pit mines: the McLaughlin Mine, SSIM 2021 Second Int. Slope Stab. Min. (2021) 69–82. 10.36487/acg_repo/2135_01.
  • N. Azadi, H. Mirzaei-Nasirabad, A. Mousavi, Evaluating the efficiency of the genetic algorithm in designing the ultimate pit limit of open-pit mines, Int. J. Min. Geo-Engineering 57 (2023) 55–58. 10.22059/ijmge.2022.340973.594963.
  • F. Navarro, N. Morales, C. Contreras-Bolton, C. Rey, V. Parada, Open-pit pushback optimization by a parallel genetic algorithm, Minerals 14 (2024) 438. 10.3390/min14050438.
  • G. Turan, A.H. Onur, Optimization of open-pit mine design and production planning with an improved floating cone algorithm, Optim. Eng. 24 (2023) 1157–1181. 10.1007/s11081-022-09725-4.
  • H. Askari-Nasab, K. Awuah-Offei, An agent-based framework for open pit mine planning, CIM Bull. 118 (2008) 1–12.
  • H. Askari-Nasab, K. Awuah-Offei, Open pit optimisation using discounted economic block values, Min. Technol. 118 (2009) 1–12. 10.1179/037178409X12450752943243.
  • W.B. Lambert, A. Brickey, A.M. Newman, K. Eurek, Open-pit block-sequencing formulations: a tutorial. Interfaces (Providence) 44 (2014) 127–142
  • S.Q. Liu, E. Kozan, New graph-based algorithms to efficiently solve large scale open pit mining optimisation problems, Expert Syst. Appl. 43 (2016) 59–65. 10.1016/j.eswa.2015.08.044.
  • D. Espinoza, M. Goycoolea, E. Moreno, A. Newman, MineLib:a library of open pit mining problems. Ann. Oper. Res. 206 (2013) 93–114. 10.1007/s10479-012-1258-3.
  • O.R. Letelier, D. Espinoza, M. Goycoolea, E. Moreno, G. Muñoz, Production scheduling for strategic open pit mine planning: A mixed-integer programming approach, Oper. Res. 68 (2020) 1425–1444. 10.1287/opre.2019.1965.
  • A. Lamghari, R. Dimitrakopoulos, A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty, Eur. J. Oper. Res. 222 (2012) 642–652. 10.1016/j.ejor.2012.05.029.
  • M. Kumral, Robust stochastic mine production scheduling, Eng. Optim. 42 (2010) 567–579. 10.1080/03052150903353336.
  • R. Chicoisne, D. Espinoza, M. Goycoolea, E. Moreno, E. Rubio, A new algorithm for the open-pit mine production scheduling problem, Oper. Res. 60 (2012) 517–528. 10.1287/opre.1120.1050.
  • A. Mousavi, E. Kozan, S.Q. Liu, Comparative analysis of three metaheuristics for short-term open pit block sequencing, J. Heuristics 22 (2016) 301–329. 10.1007/s10732-016-9311-z.
  • T.W.M. Vossen, R.K. Wood, A.M. Newman, Hierarchical benders decomposition for open-pit mine block sequencing, Oper. Res. 64 (2016) 771–793. 10.1287/opre.2016.1516.
  • E. Jélvez, N. Morales, P. Nancel-Penard, F. Cornillier, A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application, Omega 94 (2020) 102046. 10.1016/j.omega.2019.03.004.
  • A. Mousavi, E. Kozan, S.Q. Liu, Open-pit block sequencing optimization: A mathematical model and solution technique, Eng. Optim. 48 (2016) 1932–1950. 10.1080/0305215X.2016.1142080.
  • R. Noriega, Y. Pourrahimian, Shovel allocation and scheduling for open-pit mining using deep reinforcement learning, Int. J. Mining, Reclam. Environ. 00 (2024) 1–18. 10.1080/17480930.2024.2323325.
  • Z. Levinson, R. Dimitrakopoulos, J. Keutchayan, Simultaneous stochastic optimization of an open-pit mining complex with preconcentration using reinforcement learning, Appl. Soft Comput. 138 (2023) 110180. 10.1016/j.asoc.2023.110180.
  • Z. Feng, G. Liu, L. Wang, Q. Gu, L. Chen, Research on the Multiobjective and Efficient Ore-Blending Scheduling of Open-Pit Mines Based on Multiagent Deep Reinforcement Learning, Sustainability 15 (2023) 5279.
  • C. Both, R. Dimitrakopoulos, Integrating geometallurgical ball mill throughput predictions into short-term stochastic production scheduling in mining complexes, Int. J. Min. Sci. Technol. 33 (2022) 185–199. 10.1016/j.ijmst.2022.10.001.
  • A. Kumar, R. Dimitrakopoulos, Production scheduling in industrial mining complexes with incoming new information using tree search and deep reinforcement learning, Appl. Soft Comput. 110 (2021) 107644. 10.1016/j.asoc.2021.107644.
  • A. Kumar, R. Dimitrakopoulos, M. Maulen, Adaptive self-learning mechanisms for updating short-term production decisions in an industrial mining complex, J. Intell. Manuf. 31 (2020) 1795–1811. 10.1007/s10845-020-01562-5.
  • C. Paduraru, R. Dimitrakopoulos, Adaptive policies for short-term material flow optimization in a mining complex, Min. Technol. Trans. Inst. Min. Metall. 127 (2018) 56–63. 10.1080/14749009.2017.1341142.
  • C. Paduraru, R. Dimitrakopoulos, Responding to new information in a mining complex: fast mechanisms using machine learning, Min. Technol. Trans. Inst. Min. Metall. 128 (2019) 129–142. 10.1080/25726668.2019.1577596.
  • T. Wambeke, J. Benndorf, A simulation-based geostatistical approach to real-time reconciliation of the grade control model, Math. Geosci. 49 (2017) 1–37. 10.1007/s11004-016-9658-6.
  • P. Cosmin, R. Dimitrakopoulos, Mineral supply chain optimization under uncertainty using approximate dynamic programming, Math. Sci. Eng. 40 (2015) 101–137. 10.1016/S0076-5392(08)61063-2.
  • M. Tabesh, C. Mieth, H. Askari-Nasab, A multi-step approach to long-term open-pit production planning, Int. J. Min. Miner. Eng. 5 (2014) 273–298. 10.1504/IJMME.2014.066577.
  • A. Lamghari, R. Dimitrakopoulos, Hyper-heuristic approaches for strategic mine planning under uncertainty, Comput. Oper. Res. 115 (2020) 104590. 10.1016/j.cor.2018.11.010.
  • R. Dimitrakopoulos, M. Godoy, Grade control based on economic ore/waste classification functions and stochastic simulations: Examples, comparisons and applications, Trans. Institutions Min. Metall. Sect. A Min. Technol. 123 (2014) 90–106. 10.1179/1743286314Y.0000000062.
  • N. Li, D. Liu, L. Wang, H. Ye, Q. Wang, D. Yan, S. Zhao, Combination prediction of underground mine rock drilling time based on seasonal and trend decomposition using Loess, Eng. Appl. Artif. Intell. 133 (2024) 108064. 10.1016/j.engappai.2024.108064.
  • C. Zhang, X. Song, Z. Liu, B. Ma, Z. Lv, Y. Su, G. Li, Z. Zhu, Real-time and multi-objective optimization of rate-of-penetration using machine learning methods, Geoenergy Sci. Eng. 223 (2023) 211568. 10.1016/j.geoen.2023.211568.
  • E. Gurina, N. Klyuchnikov, K. Antipova, D. Koroteev, Making the black-box brighter: Interpreting machine learning algorithm for forecasting drilling accidents, J. Pet. Sci. Eng. 218 (2022) 111041. 10.1016/j.petrol.2022.111041.
  • L. Liu, W. Cao, H. Liu, A. Ord, Y. Qin, F. Zhou, C. Bi, Applying benefits and avoiding pitfalls of 3D computational modeling-based machine learning prediction for exploration targeting: Lessons from two mines in the Tongling-Anqing district, eastern China, Ore Geol. Rev. 142 (2022) 104712. 10.1016/j.oregeorev.2022.104712.
  • Y. Zhou, X. Chen, H. Zhao, M. Wu, W. Cao, Y. Zhang, H. Liu, A novel rate of penetration prediction model with identified condition for the complex geological drilling process, J. Process Control 100 (2021) 30–40. 10.1016/j.jprocont.2021.02.001.
  • A.T. Tunkiel, D. Sui, T. Wiktorski, Training-while-drilling approach to inclination prediction in directional drilling utilizing recurrent neural networks, J. Pet. Sci. Eng. 196 (2021) 108128. 10.1016/j.petrol.2020.108128.
  • H. Fan, M. Wu, W. Cao, X. Lai, L. Chen, C. Lu, S. Du, J. She, An operating performance assessment strategy with multiple modes based on least squares support vector machines for drilling process, Comput. Ind. Eng. 159 (2021) 107492. 10.1016/j.cie.2021.107492.
  • E. Gurina, N. Klyuchnikov, A. Zaytsev, E. Romanenkova, K. Antipova, I. Simon, V. Makarov, D. Koroteev, Application of machine learning to accidents detection at directional drilling, J. Pet. Sci. Eng. 184 (2020) 106519. 10.1016/j.petrol.2019.106519.
  • M. Oyedere, K. Gray, ROP and TOB optimization using machine learning classification algorithms, J. Nat. Gas Sci. Eng. 77 (2020) 103230. 10.1016/j.jngse.2020.103230.
  • M. Oyedere, K. Gray, Torque-on-bit (TOB) prediction and optimization using machine learning algorithms, J. Nat. Gas Sci. Eng. 84 (2020) 103623. 10.1016/j.jngse.2020.103623.
  • R. Dirkx, R. Dimitrakopoulos, Optimizing infill drilling decisions using multi-armed bandits: Application in a long-term, multi-element stockpile, Math. Geosci. 50 (2018) 35–52. 10.1007/s11004-017-9695-9.
  • E. Bakhtavar, S. Yousefi, Analysis of ground vibration risk on mine infrastructures: integrating fuzzy slack-based measure model and failure effects analysis, Int. J. Environ. Sci. Technol. 16 (2019) 6065–6076. 10.1007/s13762-018-2008-0.
  • V. Mwango Bowa, Optimization of blasting design parameters on open pit bench a case study of Nchanga open pits, Int. J. Sci. Technol. Res. 4 (2015) 45–51. www.ijstr.org.
  • J. Zhou, Y. Zhang, Y. Qiu, State-of-the-art review of machine learning and optimization algorithms applications in environmental effects of blasting, Artif. Intell. Rev. 57 (2024) 1–54. 10.1007/s10462-023-10636-8.
  • S. Hosseini, R. Pourmirzaee, Green policy for managing blasting induced dust dispersion in open-pit mines using probability-based deep learning algorithm, Expert Syst. Appl. 240 (2024) 122469. 10.1016/j.eswa.2023.122469.
  • X. Wang, S. Hosseini, D. Jahed Armaghani, E. Tonnizam Mohamad, Data-driven optimized artificial neural network technique for prediction of flyrock induced by boulder blasting, Mathematics 11 (2023) 1–22. 10.3390/math11102358.
  • S. Hosseini, R. Pourmirzaee, D.J. Armaghani, M.M. Sabri Sabri, Prediction of ground vibration due to mine blasting in a surface lead–zinc mine using machine learning ensemble techniques, Sci. Rep. 13 (2023) 1–20. 10.1038/s41598-023-33796-7.
  • J. Ye, X. He, A novel hybrid of ANFIS-based models using optimisation approaches to predict mine blast-induced flyrock, Int. J. Environ. Sci. Technol. 20 (2023) 3673–3686. 10.1007/s13762-022-04170-3.
  • H. Nguyen, X.N. Bui, E. Topal, Reliability and availability artificial intelligence models for predicting blast-induced ground vibration intensity in open-pit mines to ensure the safety of the surroundings, Reliab. Eng. Syst. Saf. 231 (2023) 109032. 10.1016/j.ress.2022.109032.
  • J. Zhou, Y. Qiu, M. Khandelwal, S. Zhu, X. Zhang, Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations, Int. J. Rock Mech. Min. Sci. 145 (2021) 104856. 10.1016/j.ijrmms.2021.104856.
  • C. Xie, H. Nguyen, X.N. Bui, Y. Choi, J. Zhou, T. Nguyen-Trang, Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithms, Geosci. Front. 12 (2021) 101108. 10.1016/j.gsf.2020.11.005.
  • N.K. Bhagat, A. Rana, A.K. Mishra, M.M. Singh, A. Singh, P.K. Singh, Prediction of fly-rock during boulder blasting on infrastructure slopes using CART technique, Geomatics, Nat. Hazards Risk 12 (2021) 1715–1740. 10.1080/19475705.2021.1944917.
  • B.R. Murlidhar, H. Nguyen, J. Rostami, X.N. Bui, D.J. Armaghani, P. Ragam, E.T. Mohamad, Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network, J. Rock Mech. Geotech. Eng. 13 (2021) 1413–1427. 10.1016/j.jrmge.2021.08.005.
  • X. Lu, M. Hasanipanah, K. Brindhadevi, H. Bakhshandeh Amnieh, S. Khalafi, ORELM: A novel machine learning approach for prediction of flyrock in mine blasting, Nat. Resour. Res. 29 (2020) 641–654. 10.1007/s11053-019-09532-2.
  • H.N. Rad, I. Bakhshayeshi, W.A. Wan Jusoh, M.M. Tahir, L.K. Foong, Prediction of flyrock in mine blasting: A new computational intelligence approach, Nat. Resour. Res. 29 (2020) 609–623. 10.1007/s11053-019-09464-x.
  • Q. Fang, H. Nguyen, X.N. Bui, T. Nguyen-Thoi, Prediction of blast-induced ground vibration in open-pit mines using a new technique based on imperialist competitive algorithm and M5Rules, Nat. Resour. Res. 29 (2020) 791–806. 10.1007/s11053-019-09577-3.
  • X. Zhang, H. Nguyen, X.N. Bui, Q.H. Tran, D.A. Nguyen, D.T. Bui, H. Moayedi, Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost, Nat. Resour. Res. 29 (2020) 711–721. 10.1007/s11053-019-09492-7.
  • H. Nguyen, C. Drebenstedt, X.N. Bui, D.T. Bui, Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network, Nat. Resour. Res. 29 (2020) 691–709. 10.1007/s11053-019-09470-z.
  • Y. Shang, H. Nguyen, X.N. Bui, Q.H. Tran, H. Moayedi, A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network, Nat. Resour. Res. 29 (2020) 723–737. 10.1007/s11053-019-09503-7.
  • C.K. Arthur, V.A. Temeng, Y.Y. Ziggah, Multivariate Adaptive Regression Splines (MARS) approach to blast-induced ground vibration prediction, Int. J. Mining, Reclam. Environ. 34 (2020) 198–222. 10.1080/17480930.2019.1577940.
  • S. Xu, Y. Li, J. Liu, F. Zhang, Optimization of blasting parameters for an underground mine through prediction of blasting vibration, JVC/Journal Vib. Control 25 (2019) 1585–1595. 10.1177/1077546319829938.
  • H. Nguyen, X.N. Bui, Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest, Nat. Resour. Res. 28 (2019) 893–907. 10.1007/s11053-018-9424-1.
  • K. Ram Chandar, V.R. Sastry, C. Hegde, A critical comparison of regression models and artificial neural networks to predict ground vibrations, Geotech. Geol. Eng. 35 (2017) 573–583. 10.1007/s10706-016-0126-3.
  • E.T. Mohamad, D. Jahed Armaghani, M. Hasanipanah, B.R. Murlidhar, M.N.A. Alel, Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique, Environ. Earth Sci. 75 (2016) 1–15. 10.1007/s12665-015-4983-5.
  • A. Wetherelt, K.P. Van der Wielen, Introduction to open-pit mining, in: P. Darling (Ed.), SME Min. Eng. Handb. 3rd ed., Society for Mining, Metallurgy & Exploration, UK, 2011: pp. 857–876. https://www.smenet.org/publications-resources/publications/mining-engineering-handbook.
  • S.P. Upadhyay, H. Askari-Nasab, Truck-shovel allocation optimisation: A goal programming approach. Trans. Institutions Min. Metall. Sect. A Min. Technol. 125 (2016) 82–92. 10.1179/1743286315Y.0000000024.
  • C.N. Burt, L. Caccetta, Match factor for heterogeneous truck and loader fleets, Int. J. Mining, Reclam. Environ. 21 (2007) 262–270. 10.1080/17480930701388606.
  • O.F. Ugurlu, C. Fan, B. Jiang, W.V. Liu, Deep neural network models for improving truck productivity prediction in open-pit mines, Mining, Metall. Explor. 41 (2024) 619–636. 10.1007/s42461-024-00924-4.
  • C. Zheng, L. Liu, Y. Meng, M. Wang, X. Jiang, Passable area segmentation for open-pit mine road from vehicle perspective, Eng. Appl. Artif. Intell. 129 (2024) 107610. 10.1016/j.engappai.2023.107610.
  • C. Fan, N. Zhang, B. Jiang, W.V. Liu, Weighted ensembles of artificial neural networks based on Gaussian mixture modeling for truck productivity prediction at open-pit mines, Mining, Metall. Explor. 40 (2023) 583–598. 10.1007/s42461-023-00747-9.
  • D. Huo, J. Chen, H. Zhang, Y. Shi, T. Wang, Intelligent prediction for digging load of hydraulic excavators based on RBF neural network, Meas. J. Int. Meas. Confed. 206 (2023) 112210. 10.1016/j.measurement.2022.112210.
  • S. Wang, Y. Wu, L. Hou, Z. Yang, Predictive modeling for soft measurement of loader driveshaft torque based on large-scale distributed data, Meas. J. Int. Meas. Confed. 210 (2023) 112566. 10.1016/j.measurement.2023.112566.
  • D. Huo, Y.A. Sari, R. Kealey, Q. Zhang, Reinforcement learning-based fleet dispatching for greenhouse gas emission reduction in open-pit mining operations, Resour. Conserv. Recycl. 188 (2023) 106664. 10.1016/j.resconrec.2022.106664.
  • S. Alamdari, M. Hossein Basiri, A. Mousavi, A. Soofastaei, Application of machine learning techniques to predict haul truck fuel consumption in open-pit mines, J. Min. Environ. 13 (2022) 69–85. 10.22044/jme.2022.11577.2145
  • Y. Choi, H. Nguyen, X.N. Bui, T. Nguyen-Thoi, Optimization of haulage-truck system performance for ore production in open-pit mines using big data and machine learning-based methods, Resour. Policy 75 (2022) 102522. 10.1016/j.resourpol.2021.102522.
  • L. Wang, X. Xu, Q. Su, Y. Song, H. Wang, M. Xie, Automatic gear shift strategy for manual transmission of mine truck based on Bi-LSTM network, Expert Syst. Appl. 209 (2022) 118197. 10.1016/j.eswa.2022.118197.
  • P. Nobahar, Y. Pourrahimian, F. Mollaei Koshki, Optimum fleet selection using machine learning algorithms–case study: Zenouz Kaolin mine, Mining 2 (2022) 528–541. 10.3390/mining2030028.
  • M. Aliabadi, E. Darvishi, M. Farhadian, R. Rahmani, M. Shafiee Motlagh, N. Mahdavi, An investigation of musculoskeletal discomforts among mining truck drivers with respect to human vibration and awkward body posture using random forest algorithm, Hum. Factors Ergon. Manuf. 32 (2022) 482–493. 10.1002/hfm.20965.
  • E. Köken, A.I. Lawal, M. Onifade, A. Özarslan, A comparative study on power calculation methods for conveyor belts in mining industry, Int. J. Mining, Reclam. Environ. 36 (2022) 26–45. 10.1080/17480930.2021.1949859.
  • Y. Choi, H. Nguyen, X.N. Bui, T. Nguyen-Thoi, S. Park, Estimating ore production in open-pit mines using various machine learning algorithms based on a truck-haulage system and support of Internet of Things, Nat. Resour. Res. 30 (2021) 1141–1173. 10.1007/s11053-020-09766-5.
  • Q. Wang, R. Zhang, S. Lv, Y. Wang, Open-pit mine truck fuel consumption pattern and application based on multi-dimensional features and XGBoost, Sustain. Energy Technol. Assessments 43 (2021) 100977. 10.1016/j.seta.2020.100977.
  • X. Sun, X. Li, D. Xiao, Y. Chen, B. Wang, A method of mining truck loading volume detection based on deep learning and image recognition, Sensors (Switzerland) 21 (2021) 635. 10.3390/s21020635
  • J.P. de Carvalho, R. Dimitrakopoulos, Integrating production planning with truck-dispatching decisions through reinforcement learning while managing uncertainty, Minerals 11 (2021) 587. 10.3390/min11060587.
  • Q. Wang, R. Zhang, Y. Wang, S. Lv, Machine learning-based driving style identification of truck drivers in open-pit mines, Electron. 9 (2020) 19. 10.3390/electronics9010019.
  • D. Xiao, H. Li, C. Liu, Q. He, Large-truck safety warning system based on lightweight SSD model, Comput. Intell. Neurosci. 2019(2019) 10. 10.1155/2019/2180294.
  • D. Ali, S. Frimpong, Artificial intelligence models for predicting the performance of hydro-pneumatic suspension struts in large capacity dump trucks, Int. J. Ind. Ergon. 67 (2018) 283–295. 10.1016/j.ergon.2018.06.005.
  • X. Sun, H. Zhang, F. Tian, L. Yang, The use of a machine learning method to predict the real-time link travel time of open-pit trucks, Math. Probl. Eng. 2018(2018) 14. 10.1155/2018/4368045.
  • B. Ozdemir, M. Kumral, Appraising production targets through agent-based Petri net simulation of material handling systems in open pit mines, Simul. Model. Pract. Theory 87 (2018) 138–154. 10.1016/j.simpat.2018.06.008.
  • S.R. Dindarloo, E. Siami-Irdemoosa, Data mining in mining engineering: results of classification and clustering of shovels failures data, Int. J. Mining, Reclam. Environ. 31 (2017) 105–118. 10.1080/17480930.2015.1123599.
  • M. Yeganejou, M. Badiozamani, A. Moradi-Afrapoli, H. Askari-Nasab, Integration of simulation and dispatch modelling to predict fleet productivity: an open-pit mining case, Min. Technol. Trans. Inst. Min. Metall. 131 (2021) 67–79. 10.1080/25726668.2021.2001255.
  • N. Dendle, E. Isokangas, P. Corry, Efficient simulation for an open-pit mine, Simul. Model. Pract. Theory 117 (2022) 102473. 10.1016/j.simpat.2021.102473.
  • S.Q. Liu, Z. Lin, D. Li, X. Li, E. Kozan, M. Masoud, Recent research agendas in mining equipment management: A review, Mining 2 (2022) 769–790. 10.3390/mining2040043
  • S.Q. Liu, E. Kozan, An interactive planning and scheduling framework for optimising pits-to-crushers operations, Ind. Eng. Manag. Syst. 11 (2012) 94–102. 10.7232/iems.2012.11.1.094.
  • D. Ali, M.B. Hayat, L. Alagha, O.K. Molatlhegi, An evaluation of machine learning and artificial intelligence models for predicting the flotation behavior of fine high-ash coal, Adv. Powder Technol. 29 (2018) 3493–3506. 10.1016/j.apt.2018.09.032.
  • K. Tang, Y. Da Wang, Y. Niu, T.A. Honeyands, D.O. Dea, P. Mostaghimi, R.T. Armstrong, M. Knackstedt, Particle classification of iron ore sinter green bed mixtures by 3D X-ray microcomputed tomography and machine learning, Powder Technol. 415 (2023) 118151. 10.1016/j.powtec.2022.118151.
  • L. Windrim, A. Melkumyan, R.J. Murphy, A. Chlingaryan, R. Leung, Unsupervised ore/waste classification on open-cut mine faces using close-range hyperspectral data, Geosci. Front. 14 (2023) 101562. 10.1016/j.gsf.2023.101562.
  • Y. Xu, B. Klein, G. Li, B. Gopaluni, Evaluation of logistic regression and support vector machine approaches for XRF based particle sorting for a copper ore, Miner. Eng. 192 (2023) 108003. 10.1016/j.mineng.2023.108003.
  • N.S. Bajaj, A.D. Patange, R. Jegadeeshwaran, S.S. Pardeshi, K.A. Kulkarni, R.S. Ghatpande, Application of metaheuristic optimization based support vector machine for milling cutter health monitoring, Intell. Syst. with Appl. 18 (2023) 200196. 10.1016/j.iswa.2023.200196.
  • Y.J. Cruz, M. Rivas, R. Quiza, R.E. Haber, F. Castaño, A. Villalonga, A two-step machine learning approach for dynamic model selection: a case study on a micro milling process, Comput. Ind. 143 (2022) 103764. 10.1016/j.compind.2022.103764.
  • D.J. Díaz-Romero, S. Van den Eynde, W. Sterkens, A. Eckert, I. Zaplana, T. Goedemé, J. Peeters, Real-time classification of aluminum metal scrap with laser-induced breakdown spectroscopy using deep and other machine learning approaches, Spectrochim. Acta Part B At. Spectrosc. 196 (2022) 106519. 10.1016/j.sab.2022.106519.
  • A. Gomez-Flores, G.W. Heyes, S. Ilyas, H. Kim, Prediction of grade and recovery in flotation from physicochemical and operational aspects using machine learning models, Miner. Eng. 183 (2022) 107627. 10.1016/j.mineng.2022.107627.
  • B. Zhao, S. Hu, X. Zhao, B. Zhou, J. Li, W. Huang, G. Chen, C. Wu, K. Liu, The application of machine learning models based on particles characteristics during coal slime flotation, Adv. Powder Technol. 33 (2022) 103363. 10.1016/j.apt.2021.11.015.
  • H. Dong, F. Wang, D. He, Y. Liu, The intelligent decision-making of copper flotation backbone process based on CK-XGBoost, Knowledge-Based Syst. 243 (2022) 108429. 10.1016/j.knosys.2022.108429.
  • M. Ai, Y. Xie, Z. Tang, J. Zhang, W. Gui, Deep learning feature-based setpoint generation and optimal control for flotation processes, Inf. Sci. (Ny). 578 (2021) 644–658. 10.1016/j.ins.2021.07.060.
  • Z. Wen, C. Zhou, J. Pan, T. Nie, C. Zhou, Z. Lu, Deep learning-based ash content prediction of coal flotation concentrate using convolutional neural network, Miner. Eng. 174 (2021) 107251. 10.1016/j.mineng.2021.107251.
  • K. Son, J. Lee, H. Hwang, W. Jeon, H. Yang, I. Sohn, Y. Kim, H. Um, Slag foaming estimation in the electric arc furnace using machine learning based long short-term memory networks, J. Mater. Res. Technol. 12 (2021) 555–568. 10.1016/j.jmrt.2021.02.085.
  • Y. Liu, Z. Zhang, X. Liu, L. Wang, X. Xia, Ore image classification based on small deep learning model: Evaluation and optimization of model depth, model structure and data size, Miner. Eng. 172 (2021) 107020. 10.1016/j.mineng.2021.107020.
  • Y. Liu, Z. Zhang, X. Liu, L. Wang, X. Xia, Deep learning-based image classification for online multi-coal and multi-class sorting, Comput. Geosci. 157 (2021) 104922. 10.1016/j.cageo.2021.104922.
  • L. Tuşa, M. Kern, M. Khodadadzadeh, R. Blannin, R. Gloaguen, J. Gutzmer, Evaluating the performance of hyperspectral short-wave infrared sensors for the pre-sorting of complex ores using machine learning methods, Miner. Eng. 146 (2020) 106150. 10.1016/j.mineng.2019.106150.
  • Y. Fu, B. Yang, Y. Ma, Q. Sun, J. Yao, W. Fu, W. Yin, Effect of particle size on magnesite flotation based on kinetic studies and machine learning simulation, Powder Technol. 376 (2020) 486–495. 10.1016/j.powtec.2020.08.054.
  • B. Xiao, S. Miao, Q. Gao, Quantifying particle size and size distribution of mine tailings through deep learning approach of autoencoders, Powder Technol. 397 (2022) 117088. 10.1016/j.powtec.2021.117088.
  • Y. Bi, C. Chen, X. Huang, H. Wang, G. Wei, Discrimination method of biomass slagging tendency based on particle swarm optimization deep neural network (DNN), Energy 262 (2022) 131932. 10.1016/j.energy.2022.125368.
  • P. Li, M. Ali Khan, M.G. Ahmed, H. Hassan Awan, A. Zafar, M. Faisal Javed, M. Ijaz Khan, S. Qayyum, M.Y. Malik, F. Wang, Sustainable use of chemically modified tyre rubber in concrete: machine learning based novel predictive model, Chem. Phys. Lett. 793 (2022) 139478. 10.1016/j.cplett.2022.139478.
  • L. Ma, C. Huang, Z.S. Liu, K.A. Morin, M. Aziz, C. Meints, Artificial neural network for prediction of full-scale seepage flow rate at the equity silver mine, Water. Air. Soil Pollut. 231 (2020) 1191–1199. 10.1007/s11270-020-04541-x.
  • L. Ma, C. Huang, Z.S. Liu, K.A. Morin, M. Aziz, C. Meints, The correlation between drainage chemistry and weather for full-scale waste rock piles based on artificial neural network, J. Contam. Hydrol. 239 (2021) 103793. 10.1016/j.jconhyd.2021.103793.
  • E. Rodovalho, O. Quaglio, W.S. Felsch Junior, R. Pascual, G. de Tomi, J.A. Soares Tenório, Reducing GHG emissions through efficient tire consumption in open pit mines, J. Clean. Prod. 255 (2020) 120185–120185. 10.1016/j.jclepro.2020.120185.
  • Y. Yang, W. Zhou, Z. Wang, I.M. Jiskani, Y. Yang, Accurate long-term dust concentration prediction in open-pit mines: A novel machine learning approach integrating meteorological conditions and mine production intensity, J. Clean. Prod. 436 (2024) 140411. 10.1016/j.jclepro.2023.140411.
  • Y. Zhang, L. Wei, Q. Lu, Y. Zhong, Z. Yuan, Z. Wang, Z. Li, Y. Yang, Mapping soil available copper content in the mine tailings pond with combined simulated annealing deep neural network and UAV hyperspectral images, Environ. Pollut. 320 (2023) 120962. 10.1016/j.envpol.2022.120962.
  • S. Bandyopadhyay, S.K. Maiti, Application of statistical and machine learning approach for prediction of soil quality index formulated to evaluate trajectory of ecosystem recovery in coal mine degraded land, Ecol. Eng. 170 (2021) 106351. 10.1016/j.ecoleng.2021.106351.
  • X. Lu, W. Zhou, C. Qi, H. Luo, D. Zhang, B.T. Pham, Prediction into the future: a novel intelligent approach for PM2.5 forecasting in the ambient air of open-pit mining, Atmos. Pollut. Res. 12 (2021) 101084. 10.1016/j.apr.2021.101084.
  • L. Li, R. Zhang, J. Sun, Q. He, L. Kong, X. Liu, Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm, J. Environ. Heal. Sci. Eng. 19 (2021) 401–414. 10.1007/s40201-021-00613-0.
  • C. Qi, W. Zhou, X. Lu, H. Luo, B.T. Pham, Z.M. Yaseen, Particulate matter concentration from open-cut coal mines: a hybrid machine learning estimation, Environ. Pollut. 263 (2020) 114517. 10.1016/j.envpol.2020.114517.
  • D. He, B.T. Le, D. Xiao, Y. Mao, F. Shan, T.T.L. Ha, Coal mine area monitoring method by machine learning and multispectral remote sensing images, Infrared Phys. Technol. 103 (2019) 103070. 10.1016/j.infrared.2019.103070.
  • Y. Vasuki, L. Yu, E.J. Holden, P. Kovesi, D. Wedge, A.H. Grigg, The spatial-temporal patterns of land cover changes due to mining activities in the Darling Range, Western Australia: a visual analytics approach, Ore Geol. Rev. 108 (2019) 23–32. 10.1016/j.oregeorev.2018.07.001.
  • P. Bimpong, B. Addai, S.K. Achinah, Analysis of the causal nexus between mining exports and the environment,Resour. Policy 79 (2022) 103003. 10.1016/j.resourpol.2022.103003.
  • R.G. Dimitrakopoulos, S.A. Abdel Sabour, Evaluating mine plans under uncertainty: Can the real options make a difference?, Resour. Policy 32 (2007) 116–125. 10.1016/j.resourpol.2007.06.003.
  • W. Pan, S.Q. Liu, M. Kumral, A. D’Ariano, M. Masoud, W.A. Khan, A. Bakather, Iron ore price forecast based on a multi-echelon tandem learning model, Nat. Resour. Res. (2024)
  • S.Q. Liu, X. Huang, X. Li, M. Masoud, S.-H. Chung, Y. Yin, How is China’s energy security affected by exogenous shocks? Evidence of China-US trade dispute and COVID-19 pandemic, Discov. Energy 1 (2021) 2. 10.1007/s43937-021-00002-6.
  • A. Alipour, A.A. Khodaiari, A. Jafari, R. Tavakkoli-Moghaddam, An integrated approach to open-pit mines production scheduling, Resour. Policy 75 (2022) 102459. 10.1016/j.resourpol.2021.102459.
  • P. Nancel-Penard, N. Morales, F. Cornillier, A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem, Eur. J. Oper. Res. 303 (2022) 1088–1099. 10.1016/j.ejor.2022.04.005.
  • E. Bozorgebrahimi, R.A. Hall, G.H. Blackwell, Sizing equipment for open pit mining - A review of critical parameters, Inst. Min. Metall. Trans. Sect. A Min. Technol. 112 (2003) 171–179. 10.1179/037178403225003591.
  • A. Hazrathosseini, A. Moradi Afrapoli, Transition to intelligent fleet management systems in open pit mines: A critical review on application of reinforcement-learning-based systems, Min. Technol. 133 (2024) 50–73. 10.1177/25726668231222998.
  • A. Hazrathosseini, A. Moradi Afrapoli, The advent of digital twins in surface mining: Its time has finally arrived, Resour. Policy 80 (2023) 103155. 10.1016/j.resourpol.2022.103155.
  • S.Q. Liu, E. Kozan, Integration of mathematical models for ore mining industry, Int. J. Syst. Sci. Oper. Logist. 6 (2019) 55–68. 10.1080/23302674.2017.1344330.
  • E. Kozan, S.Q. Liu, An operational-level multi-stage mine production timetabling model for optimally synchronising drilling, blasting and excavating operations, Int. J. Mining, Reclam. Environ. 31 (2017) 457–474. 10.1080/17480930.2016.1160818.
  • B. Ozdemir, M. Kumral, Simulation-based optimization of truck-shovel material handling systems in multi-pit surface mines, Simul. Model. Pract. Theory 95 (2019) 36–48. 10.1016/j.simpat.2019.04.006.
  • M. Schulze, J. Rieck, C. Seifi, J. Zimmermann, Machine scheduling in underground mining: an application in the potash industry, OR Spectr. 38 (2016) 365–403.
  • S.Q. Liu, E. Kozan, P. Corry, M. Masoud, K. Luo, A real-world mine excavators timetabling methodology in open-pit mining, Springer US, 2022. 10.1007/s11081-022-09741-4.
  • C. Seifi, M. Schulze, J. Zimmermann, A new mathematical formulation for a potash-mine shift scheduling problem with a simultaneous assignment of machines and workers, Eur. J. Oper. Res. 292 (2021) 27–42. 10.1016/j.ejor.2020.10.007.
  • M. Ostermeier, A. Heimfarth, A. Hübner, The multi-vehicle truck-and-robot routing problem for last-mile delivery, Eur. J. Oper. Res. 310 (2023) 680–697. 10.1016/j.ejor.2023.03.031.
  • M.F. Del Castillo, R. Dimitrakopoulos, Dynamically optimizing the strategic plan of mining complexes under supply uncertainty, Resour. Policy 60 (2019) 83–93.
  • Q. Zhang, S.Q. Liu, A. D’Ariano, S.H. Chung, M. Masoud, X. Li, A bi-level programming methodology for decentralized mining supply chain network design, Expert Syst. Appl. 250 (2024) 123904. 10.1016/j.eswa.2024.123904.
  • M.R.F. da Silva, I.R.S. Agostino, E.M. Frazzon, Integration of machine learning and simulation for dynamic rescheduling in truck appointment systems, Simul. Model. Pract. Theory 125 (2023) 102747. 10.1016/j.simpat.2023.102747.
  • J. Renaud, R. Karam, M. Salomon, R. Couturier, Deep learning and gradient boosting for urban environmental noise monitoring in smart cities, Expert Syst. Appl. 218 (2023) 119568. 10.1016/j.eswa.2023.119568.
  • Y. Liu, W. Heng, H. Yue, Quantifying the coal mining impact on the ecological environment of Gobi open-pit mines, Sci. Total Environ. 883 (2023) 163723. 10.1016/j.scitotenv.2023.163723.
  • X. He, Y. Wei, J. Holguin-Veras, Brownian bridge-based speed imputation technique for truck energy consumption and emissions estimation, Transp. Res. Part D Transp. Environ. 114 (2023) 103546. 10.1016/j.trd.2022.103546.
  • L. Zeng, S.Q. Liu, E. Kozan, R. Burdett, M. Masoud, S. Chung, Designing a resilient and green coal supply chain network under facility, Comput. Ind. Eng. (2023) In press. 10.1016/j.cie.2023.109476.
  • E. Kozan, S.Q. Liu, A demand-responsive decision support system for coal transportation, Decis. Support Syst. 54 (2012) 665–680. 10.1016/j.dss.2012.08.012.
  • S.Q. Liu, E. Kozan, Scheduling trains with priorities: a no-wait blocking parallel-machine job-shop scheduling model, Transp. Sci. 45 (2011) 175–198. 10.1287/trsc.1100.0332.
  • Y. He, H. Ma, W. Park, S.Q. Liu, S. Chung, Maximizing robustness of aircraft routing with heterogeneous maintenance tasks, Transp. Res. Part E 177 (2023) 103237. 10.1016/j.tre.2023.103237.
  • R. Basso, B. Kulcsár, I. Sanchez-Diaz, X. Qu, Dynamic stochastic electric vehicle routing with safe reinforcement learning, Transp. Res. Part E Logist. Transp. Rev. 157 (2022) 102496. 10.1016/j.tre.2021.102496.
  • Y. Zhang, R. Bai, R. Qu, C. Tu, J. Jin, A deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertainties, Eur. J. Oper. Res. 300 (2022) 418–427. 10.1016/j.ejor.2021.10.032.
  • S. Filom, A.M. Amiri, S. Razavi, Applications of machine learning methods in port operations – A systematic literature review, Transp. Res. Part E Logist. Transp. Rev. 161 (2022) 102722. 10.1016/j.tre.2022.102722.
  • P. Corry, C. Bierwirth, The berth allocation problem with channel restrictions, Transp. Sci. 53 (2019) 708–727. 10.1287/trsc.2018.0865.
  • J.M. Leal Gomes Leite, E.F. Arruda, L. Bahiense, L.G. Marujo, Modeling the integrated mine-to-client supply chain: a survey, Int. J. Mining, Reclam. Environ. 34 (2020) 247–293. 10.1080/17480930.2019.1579693.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.