150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterisation of the internal friction angle of waste rock material from large triaxial tests using the contact dynamics method

ORCID Icon & ORCID Icon
Received 17 Apr 2024, Accepted 09 Jun 2024, Published online: 25 Jun 2024

References

  • SERNAGEOMIN, Nuevo Catastro Minero, Spanish. 2023a. Accessed 3-March-2023, Available at https://www.sernageomin.cl/catastro-minero/.
  • M. Maknoon, Slope stability analyses of waste rock piles under unsaturated conditions following large precipitations, Ph. D. thesis, Département des Génies Civil, Géologique et des Mines École Polytechnique de Montréal, Canada, 2016.
  • V.T. McLemore, A. Fakhimi, D. van Zyl, G.F. Ayakwah, K. Anim, K. Boakye, F. Ennin, P. Felli, D. Fredlund, L.A.F. Gutierrez, S. Nunoo, S. Tachie-Menson, and V.C. Viterbo, Literature review of other rock piles: Characterization, weathering, and stability. Questa rock pile weathering stability project. Open-file Report OF-517 Molycorp Task B4.2.5. New Mexico, Eng. Geol. 279 (2020) (2009), pp. 105871.
  • K. Moffitt, Mine waste dump instability, M.Sc. thesis, Department of Civil Engineering, University of British Columbia, Canada, 2000.
  • E. Bard and M.E. Anabalón, Comportement des stériles miniers ROM à haute pressions, Du grain à l’ouvrage, 2008; Accessed September 5, 2021, Available at https://www.cfms-sols.org/sites/default/files/manifestations/080312/2-Bard.pdf.
  • C. Palma, S. Linero, and R. Apablaza, Geotechnical characterization of waste material in very high dumps with large scale triaxial and odometer testing, Proc. Of III Young South-American Geotechnical Conference, International Society for Soil Mechanics and Geotechnical Engineering, Córdoba, Argentina, 2009, pp. 1–4.
  • L. Valenzuela, E. Bard, and J. Campaña, Seismic considerations in the design of high waste rock dumps, 5th International Conference on Earthquake Geotechnical Engineering (5-ICEGE), Santiago, Chile, 2011.
  • O. Hungr, R. Dawson, A. Kent, D. Campbell, and N. Morgenstern, Rapid flow slides of coal-mine waste in British Columbia, Canada, in Catastrophic Landslides. Effects Occurrences and Mechanisms, S.G. Evans and J.V. DeGraff, eds. Geological Society of America, Colorado, USA, 2002, pp. 191–208.
  • BCMEM. (British Columbia Ministry of Energy and Mines), Investigation and Design Manual Interim Guidelines, Mine rock and overburden piles, British Columbia, Canada, 1991.
  • M. Hawley and J. Cunning. Guidelines for Mine Waste Dump and Stockpile Design, M. Hawley and J. Cunning eds. CSIRO Press/Balkema, Australia, 2017.
  • SERNAGEOMIN, Guía metodológica para evaluación de la estabilidad física de instalaciones mineras remanentes, Spanish. 2018. Accessed 28-February-2023, available at https://www.sernageomin.cl/wp-content/uploads/2019/06/GUIA-METODOLOGICA.pdf/.
  • L. Valenzuela, Stability issues in natural and man-made slopes in mining, in Landslides: Evaluation and Stabilization, W. Lacerda, M. Ehrlich, S.A. Fontoura, and A.S. Sayão, eds. A.A Balkema, Rio de Janeiro, Brazil, 2004, pp. 467–43.
  • E. Bard, M.E. Anabalón, and J. Campaña, Waste Rock Behavior at High Pressures. Multiscale Geomechanics, John Wiley & Sons, Inc, Hoboken, NJ USA, 2013, pp. 83–112.
  • L. Dorador, Análisis experimental de las metodologías de curvas homotéticas y corte en la evaluación de propiedades geotécnicas de suelos, [In Spanish]. M.Sc. thesis, Departamento de Ingeniería Civil, Universidad de Chile, 2010.
  • C. Ovalle, S. Linero, C. Dano, E. Bard, P.-Y. Hicher, and R. Osses, Data compilation from large drained compression triaxial tests on coarse crushable rockfill materials, J. Geotech. Geoenviron. Eng. 146 (9) (2020), pp. 6020013. doi:10.1061/(ASCE)GT.1943-5606.0002314.
  • T.M. Leps, Review of shearing strength of rockfill, J. Soil Mech. Found. Div. Am. Soc. Civil Eng. 96 (4) (1970), pp. 1159–1170. doi:10.1061/JSFEAQ.0001433.
  • MMCh, Ley 20551. Regula el Cierre de Faenas e Instalaciones Mineras. Ministerio de Minería. Publicado el 11 de noviembre de 2011. Inicio de vigencia: 11 de noviembre de 2012. [In Spanish]. 2012. Accessed 17-February-2023, Available at https://www.bcn.cl/leychile/navegar?idNorma=1032158&idParte=0.
  • MMCh, Ley 20819. Modifica la ley Nº 20.551 que regula el cierre de faenas e instalaciones mineras e introduce otras modificaciones legales. Ministerio de Minería. Publicado e inicio de vigencia: 14 de marzo de 2015. [In Spanish]. 2015. Accessed 17-February-2023, Available at https://www.bcn.cl/leychile/navegar?idNorma=1075399.
  • SERNAGEOMIN, Guía de presentación de proyectos de botaderos de estériles en faenas mineras, Spanish. 2023b. Accessed 27-May-2024, Available at https://www.sernageomin.cl/wp-content/uploads/2024/01/Gui%CC%81a-de-botaderos-2023-WEB.pdf.
  • W. Fuentes, M. Gil, and J. Duque, Dynamic simulation of the sudden settlement of a mine waste dump under earthquake loading, Int. J. Min. Reclam. Environ. 33 (6) (2019), pp. 425–443. doi:10.1080/17480930.2018.1483703.
  • O. Igwe and C. Chukwu, Slope stability analysis of mine waste dumps at a mine site in Southeastern Nigeria, Bull. Eng. Geol. Environ. 78 (4) (2019), pp. 2503–2517. doi:10.1007/s10064-018-1304-8.
  • Rahul and M. Khandelwal, R. Rai, & B.K. Shrivastva, Evaluation of dump slope stability of a coal mine using artificial neural network, Geomech. Geophys. Geo-Energ. Geo-Resour 1 (2015), pp. 69–77. doi:10.1007/s40948-015-0009-8.
  • E. Steiakakis, K. Kavouridis, and D. Monopolis, Large scale failure of the external waste dump at the “South Field” lignite mine, Northern Greece, Eng. Geol. 104 (3–4) (2009), pp. 269–279. doi:10.1016/j.enggeo.2008.11.008.
  • Y. Bao, X. Han, J. Chen, W. Zhang, J. Zhan, X. Sun, and M. Chen, Numerical assessment of failure potential of a large mine waste dump in Panzhihua City, China, Eng. Geol. 253 (2019), pp. 171–183. doi:10.1016/j.enggeo.2019.03.002.
  • G. Gupta, S.K. Sharma, G.S.P. Singh, and N. Kishore, Numerical modelling-based stability analysis of waste dump slope structures in open-pit mines-a review, J. Inst. Eng. India Ser. D 102 (2) (2021), pp. 589–601. doi:10.1007/s40033-021-00277-y.
  • R. Rai, M. Khandelwal, and A. Jaiswal, Application of geogrids in waste dump stability: A numerical modeling approach, Environ. Earth Sci. 66 (5) (2012), pp. 1459–1465. doi:10.1007/s12665-011-1385-1.
  • J. Manso, J. Marcelino, and L. Caldeira, Crushing and oedometer compression of rockfill using DEM, Comput. Geotech. 101 (2018), pp. 11–22. doi:10.1016/j.compgeo.2018.04.009.
  • Z. Nie, Y. Zhu, X. Wang, and J. Gong, Investigating the effects of Fourier-based particle shape on the shear behaviors of rockfill material via DEM, Granular. Matter 21 (22) (2019), pp. 1–15. doi:10.1007/s10035-019-0875-9.
  • M. Xu, J. Hong, and E. Song, DEM study on the effect of particle breakage on the macro- and micro-behavior of rockfill sheared along different stress paths, Comput. Geotech. 89 (2017), pp. 113–127. doi:10.1016/j.compgeo.2017.04.012.
  • M. Zhou and E. Song, A random virtual crack DEM model for creep behavior of rockfill based on the subcritical crack propagation theory, Acta Geotech. 11 (4) (2016), pp. 827–847. doi:10.1007/s11440-016-0446-8.
  • P. Qiu and T. Pabst, Effect of construction method and bench height on particle size segregation during waste rock disposal, Int. J. Min. Reclam. Environ. (2024), pp. 1–24. doi:10.1080/17480930.2024.2337504.
  • L. Contreras, Comportamiento friccionante de materiales granulares gruesos, Universidad de Chile. [In Spanish]. M.Sc. thesis, Departamento de Ingeniería Civil, Universidad de Chile, 2011.
  • P. De Almeida, Avaliação do comportamento geomecânico e de alterabilidade de enrocamentos, [In Portuguese]. Ph. D. thesis, Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro, Brazil, 2001.
  • Z. Fox, Critical state, dilatancy and particle breakage of mine waste rock, M.Sc. thesis, Department of Civil & Environmental Engineering, Colorado State University, USA, 2011.
  • S. Linero, C. Palma, and R. Apablaza, Geotechnical characterisation of waste material in very high dumps with large scale triaxial testing.” In Y. Potvin, ed. Slope Stability 2007: Proceedings of the 2007 International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, Australia, 2007, pp. 59–75.
  • J. Riquelme, Estudio de correlaciones para densidad relativa y resistencia al corte de suelos granulares gruesos, Departamento de Ingeniería Civil, Universidad de Chile, Universidad de Chile, 2016.
  • G. Besio, Uso del método de curvas homotéticas en la representación de ensayos monotónicos y cíclicos en suelos gruesos, [In Spanish]. M.Sc. thesis, Departamento de Ingeniería Civil, Universidad de Chile, 2012.
  • J.I. Riquelme and L. Dorador, Methodology to determine maximum and minimum void index in coarse granular soils from small-scale tests correlations, 70th Canadian Geotechnical Conference, GeoOttawa 2017, Ottawa, Canada, 2017.
  • L.H. Mantilla and R. Ayala, Case study: Seismic analysis for slope stability of a high waste rock dump, in Proc. Tailings and Mine Waste 2016, C.S. University, ed. UBC Studios. University of British Columbia, Keystone, Colorado, USA, 2016, pp. 149–158.
  • B. Indraratna, L.S. Wijewardena, and A.S. Balasubramaniam, Discussion: Large-scale triaxial testing of greywacke rockfill, Géotechnique 44 (3) (1994), pp. 539–543. doi:10.1680/geot.1994.44.3.539.
  • A. Bozdağ and İ. İnce, Predicting strength parameters of igneous rocks from slake durability index, AKU-J. Sci. Eng. 18 (3) (2018), pp. 1102–1109. doi:10.5578/fmbd.67821.
  • E. Broch and J.A. Franklin, The point-load strength test, Int. J. Rock Mech. Min. Sci. 9 (6) (1972), pp. 669–676. doi:10.1016/0148-9062(72)90030-7.
  • S. Kahraman and M. Fener, Predicting the Los Angeles abrasion loss of rock aggregates from the uniaxial compressive strength, Mater. Lett. 61 (26) (2007), pp. 4861–4865. doi:10.1016/j.matlet.2007.06.003.
  • E. Azéma, F. Radjaï, and F. Dubois, Packings of irregular polyhedral particles: Strength, structure, and effects of angularity, Phys. Rev. E 87 (6) (2013), pp. 062203. doi:10.1103/PhysRevE.87.062203.
  • F. Dubois, and M. Jean, Actes du sixième colloque national en calcul des structures, CSMA-AFM-LMS (2003), pp. 111–118.
  • D. Cantor, E. Azéma, P. Sornay, and F. Radjaï, Numerical simulation of the compaction of crushable grains in 3d, EPJ Web of Conferences, July 3–7, 2017, Montpellier, France, 2017.
  • F. Perales, F. Dubois, Y. Monerie, B. Piar, and L. Stainier, A nonsmooth contact dynamics-based multi-domain solver: Code coupling (xper) and application to fracture, Eur. J. Comput. Mechanics/Revue Européenne de Mécanique Numérique 19 (4) (2010), pp. 389–417. doi:10.3166/ejcm.19.389-417.
  • A. Rafiie, M. Vinches, and F. Dubois, The Non-Smooth Contact Dynamics Method Applied to the Mechanical Simulation of a Jointed Rock Mass, ENOC, Montpellier, France, 2011.
  • V. Topin, F. Dubois, Y. Monerie, F. Perales, and A. Wachs, Micro-rheology of dense particulate flows: Application to immersed avalanches, J. Nonnewton Fluid. Mech. 166 (1–2) (2011), pp. 63–72. doi:10.1016/j.jnnfm.2010.10.006.
  • M. Jean, The non smooth contact dynamics method, Comput. Meth. Appl. Mech. Eng 177 (3–4) (1999), pp. 235–257. doi:10.1016/S0045-7825(98)00383-1.
  • J.J. Moreau, Some numerical methods in multibody dynamics: Application to granular materials, Eur. J. Mechanics A. Solids 13 (4) (1994), pp. 93–114.
  • B. Brogliato, Nonsmooth Mechanics, Springer, London, 1999.
  • J.J. Moreau. Unilateral contact and dry friction in finite freedom dynamics, in Nonsmooth Mechanics and Applications International Centre for Mechanical Sciences Moreau, J.J., Panagiotopoulos, P.D. eds., Vol 302. Springer, Vienna, 1988. doi:10.1007/978-3-7091-2624-0_1.
  • P.A. Cundall, A Computer Model for Simulating Progressive, Large Scale Movement in Blocky Rock Systems, In: Symp, ISRM, Nancy, France, Proc, 1971.
  • P.A. Cundall and O. Strack, A discrete numerical model for granular assemblies, Géotechnique 29 (1) (1979), pp. 47–65. doi:10.1680/geot.1979.29.1.47.
  • P.A. Cundall, Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks, Int. J. Rock Mech. Min. Sci. Geomechan. Abstr. 25 (3) (1988), pp. 107–116. Pergamon.10.1016/0148-9062(88)92293-0.
  • N. Brilliantov, F. Spahn, J. Hertzsch, and T. Pöschel, Model for collisions in granular gases, Phys. Rev. E 53 (5) (1996), pp. 5382. doi:10.1103/PhysRevE.53.5382.
  • H. Herrmann and S. Luding, Modeling granular media on the computer, Contin. Mech. Thermodyn. 10 (4) (1998), pp. 189–231. doi:10.1007/s001610050089.
  • T. Pöschel and V. Buchholtz, Molecular dynamics of arbitrarily shaped granular particles, J. Phys. I France 5 (11) (1995), pp. 1431–1455. doi:10.1051/jp1:1995208.
  • F. Radjaï and F. Dubois, Discrete-Element Modeling of Granular Materials, Wiley-Iste, London, United Kingdom, 2011.
  • H. Ge, J.C. Quezada, V. Le Houerou, and C. Chazallon, Three-dimensional simulation of asphalt mixture incorporating aggregate size and morphology distribution based on contact dynamics method, Constr. Build. Mater. 302 (2021), pp. 124124. doi:10.1016/j.conbuildmat.2021.124124.
  • J.C. Quezada, P. Breul, G. Saussine, and F. Radjai, Stability, deformation, and variability of granular fills composed of polyhedral particles, Phys. Rev. E 86 (3) (2012), pp. 031308. doi:10.1103/PhysRevE.86.031308.
  • J.C. Quezada, P. Breul, G. Saussine, and F. Radjai, Penetration test in coarse granular material using contact dynamics method, Comput. Geotech. 55 (2014), pp. 248–253. doi:10.1016/j.compgeo.2013.09.006.
  • E. Azéma, S. Linero, N. Estrada, and A. Lizcano, Shear strength and microstructure of polydisperse packings: The effect of size span and shape of particle size distribution, Phys. Rev. E 96 (2) (2017), pp. 22902. doi:10.1103/PhysRevE.96.022902.
  • J. Zhang, X. Wang, Z.Y. Yin, and Z. Liang, DEM modeling of large-scale triaxial test of rock clasts considering realistic particle shapes and flexible membrane boundary, Eng. Geol. 279 (2020), pp. 105871. doi:10.1016/j.enggeo.2020.105871.
  • G. Combe and J.-N. Roux, Discrete numerical simulation, quasistatic deformation and the origins of strain in granular materials. 3rd international symposium on deformation characteristics of geomaterials, Sep 2003, Lyon, France. pp. 1071-1078. (hal-00354754)
  • G.D.R. MiDi, On dense granular flows, Eur. Phys. J. D E 14 (2004), pp. 341–365. doi:10.1140/epje/i2003-10153-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.