217
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Deep learning-based rock type identification using drill vibration frequency spectrum images

ORCID Icon, , , &
Received 05 Sep 2023, Accepted 20 Jun 2024, Published online: 28 Jun 2024

References

  • R. Ghosh, Assessment of Rock Mass Quality and Its Effects on Charge Ability Using Drill Monitoring Technique, Luleå University of Technology, Luleå, 2017.
  • D.V. Ellis, Well Logging for Earth Scientists, 2nd ed. Springer, Dordrecht, The Netherlands, 2007.
  • V. Isheyskiy and J.A. Sanchidrián, Prospects of applying MWD technology for quality management of drilling and blasting operations at mining enterprises, Minerals 10 (10) (2020), pp. 925. doi:10.3390/min10100925.
  • Z. Li, K. Itakura, and Y. Ma, Survey of measurement-while-drilling technology for small-diameter drilling machines, Electron. J. Geotechnical. Eng. 19 (n.d), pp. 17.
  • V. Vezhapparambu, J. Eidsvik, and S. Ellefmo, Rock classification using multivariate analysis of measurement while drilling data: Towards a better sampling strategy, Minerals 8 (9) (2018), pp. 384. doi:10.3390/min8090384.
  • R. Leung and S. Scheding, Automated coal seam detection using a modulated specific energy measure in a monitor-while-drilling context, Int. J. Rock Mech. Min. Sci. 75 (2015), pp. 196–209. doi:10.1016/j.ijrmms.2014.10.012.
  • S. Manzoor, Rock mass characterization using MWD data and photogrammetry, in Mining Goes Digital C. Mueller, ed. 1st ed. CRC Press, London, 2019, pp. 217–225. doi: 10.1201/9780429320774-25.
  • M. Zborovjan and I. Leššo, Acoustic identification of rocks during drilling. Acta Montan. Slovaca. 8 (2003), pp. 3.
  • S. Shreedharan, C. Hegde, S. Sharma, and H. Vardhan, Acoustic fingerprinting for rock identification during drilling, IJMME 5 (2) (2014), pp. 89. doi:10.1504/IJMME.2014.060193.
  • M. Khoshouei and R. Bagherpour, Predicting the geomechanical properties of hard rocks using analysis of the acoustic and vibration signals during the drilling operation, Geotech. Geol. Eng. 39 (3) (2021), pp. 2087–2099. doi:10.1007/s10706-020-01611-z.
  • B.B. Sinaice, Y. Kawamura, J. Kim, N. Okada, I. Kitahara, and H. Jang, Application of deep learning approaches in igneous rock hyperspectral imaging. In: E. Topal, ed. Proceedings of the 28th International Symposium on Mine Planning and Equipment Selection - MPES 2019, Springer Series in Geomechanics and Geoengineering, Springer International Publishing, Cham, 2020, pp. 228–235. doi:10.1007/978-3-030-33954-8_29.
  • Z. Xu, W. Ma, P. Lin, H. Shi, D. Pan, and T. Liu, Deep learning of rock images for intelligent lithology identification, Comput. Geosci. 154 (2021), pp. 104799. doi:10.1016/j.cageo.2021.104799.
  • dos Anjos, CEM, M.R.V. Avila, A.G.P. Vasconcelos, A.M. Pereira Neta, L.C. Medeiros, A.G. Evsukoff, R. Surmas, and L. Landau, Deep learning for lithological classification of carbonate rock micro-CT images, Comput. Geosci. 25 (3) (2021), pp. 971–983. doi:10.1007/s10596-021-10033-6.
  • D. Li, R. Shirani Faradonbeh, A. Lv, X. Wang, and H. Roshan, A data-driven field-scale approach to estimate the permeability of fractured rocks, Int. J. Min. Reclam. Environ. 36 (10) (2022), pp. 671–687. doi:10.1080/17480930.2022.2086769.
  • B. Yu, D. Zhang, B. Xu, Y. Liu, H. Zhao, and C. Wang, Modeling of true triaxial strength of rocks based on optimized genetic programming, Appl. Soft Comput. 129 (2022), pp. 109601. Available at. 10.1016/j.asoc.2022.109601.
  • C. Kumar, H. Vardhan, C. Murthy, and N.C. Karmakar, Estimating rock properties using sound signal dominant frequencies during diamond core drilling operations, J. Rock Mech. Geotech. Eng. 11 (4) (2019), pp. 850–859. doi:10.1016/j.jrmge.2019.01.001.
  • Y. Xie, C. Zhu, W. Zhou, Z. Li, X. Liu, and M. Tu, Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances, J. Pet. Sci. Eng. 160 (2018), pp. 182–193. doi:10.1016/j.petrol.2017.10.028.
  • Y. Imamverdiyev and L. Sukhostat, Lithological facies classification using deep convolutional neural network, J. Pet. Sci. Eng. 174 (2019), pp. 216–228. doi:10.1016/j.petrol.2018.11.023.
  • X. Hu, L. Chu, J. Pei, W. Liu, and J. Bian, Model complexity of deep learning: A survey, Knowl. Inf. Syst. 63 (10) (2021), pp. 2585–2619. doi:10.1007/s10115-021-01605-0.
  • L. Senjoba, Y. Kosugi, M. Hisada, and Y. Kawamura, Lithology identification during rotary percussion drilling based on acceleration waveform 1D convolutional neural network, in Rock Mechanics and Engineering Geology in Volcanic Fields, CRC Press, London, 2022, pp. 435–441. doi:10.1201/9781003293590-54.
  • A. Lesne, The discrete versus continuous controversy in physics, Math. Struct. Comp. Sci. 17 (2) (2007), pp. 185–223. doi:10.1017/S0960129507005944.
  • M. Khoshouei, R. Bagherpour, and M.H. Jalalian, Rock type identification using analysis of the acoustic signal frequency contents propagated while drilling operation, Geotech. Geol. Eng. 40 (3) (2022), pp. 1237–1250. doi:10.1007/s10706-021-01957-y.
  • D. Peng, Z. Liu, H. Wang, Y. Qin, and L. Jia, A novel deeper one-dimensional CNN with residual learning for fault diagnosis of wheelset bearings in high-speed trains, IEEE. Access 7 (2019), pp. 10278–10293. doi:10.1109/ACCESS.2018.2888842.
  • J. Grezmak, P. Wang, C. Sun, and R.X. Gao, Explainable convolutional neural network for gearbox fault diagnosis, Procedia. CIRP 80 (2019), pp. 476–481. doi:10.1016/j.procir.2018.12.008.
  • B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, Convolutional neural networks for time series classification, J. Syst. Eng. Electron. 28 (1) (2017), pp. 162–169. doi:10.21629/JSEE.2017.01.18.
  • D. Cian, J. van Gemert, and A. Lengyel, Evaluating the performance of the LIME and Grad-CAM explanation methods on a LEGO multi-label image classification task, arXiv: 2008.01584 [cs]. (2020), [Preprint]. http://arxiv.org/abs/2008.01584.
  • R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, Grad-CAM: Visual explanations from deep networks via gradient-based localization, Int. J. Comput. Vis. 128 (2020), pp. 336–359. doi:10.1007/s11263-019-01228-7.
  • F. Chen and J.Y. Tsou, Assessing the effects of convolutional neural network architectural factors on model performance for remote sensing image classification: An in-depth investigation, Int. J. Appl. Earth Obs. Geoinf. 112 (2022), pp. 102865. doi:10.1016/j.jag.2022.102865.
  • K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778.
  • C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the inception architecture for computer vision, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 2818–2826.
  • G. Huang, Z. Liu, L. van der Maaten, and K.Q. Weinberger, Densely connected convolutional networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 4700–4708.
  • G. Chen, M. Chen, G. Hong, Y. Lu, B. Zhou, and Y. Gao, A new method of lithology classification based on convolutional neural network algorithm by utilizing drilling string vibration data, Energies 13 (4) (2020), pp. 888. doi:10.3390/en13040888.
  • Y. Yoo and S. Jeong, Vibration analysis process based on spectrogram using gradient class activation map with selection process of CNN model and feature layer, Displays 73 (2022), pp. 102233. doi:10.1016/j.displa.2022.102233.
  • M. Qin, K. Wang, K. Pan, T. Sun, and Z. Liu, Analysis of signal characteristics from rock drilling based on vibration and acoustic sensor approaches, Appl. Acoust. 140 (2018), pp. 275–282. doi:10.1016/j.apacoust.2018.06.003.