1,997
Views
36
CrossRef citations to date
0
Altmetric
Review

Haptic-assistive technologies for audition and vision sensory disabilities

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 394-421 | Received 15 Mar 2017, Accepted 24 Sep 2017, Published online: 10 Oct 2017

References

  • Ziegler-Graham K, MacKenzie EJ, Ephraim PL, et al. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89:422–429.
  • Abu-Faraj ZO. Handbook of research on biomedical engineering education and advanced bioengineering learning: interdisciplinary concepts: interdisciplinary concepts. Hershey, PA: IGI Global; 2012.
  • Auer-Grumbach M, De Jonghe P, Verhoeven K, et al. Autosomal dominant inherited neuropathies with prominent sensory loss and mutilations: a review. Arch Neurol. 2003;60:329–334.
  • Rasmussen P. The congenital insensitivity‐to‐pain syndrome (analgesia congenita): report of a case. Int J Paediatr Dent. 1996;6:117–122.
  • Wickremaratchi M, Llewelyn J. Effects of ageing on touch. Postgrad Med J. 2006;82:301–304.
  • World-Health-Organization. 2012. Prevention of blindness and deafness: Grades of hearing impairment. Available from: http://www.who.int/pbd/deafness/hearing_impairment_grades/en/. Accessed 2016 June 10.
  • World-Health-Organization. WHO global estimates on prevalence of hearing loss. Mortality and Burden of Diseases and Prevention of Blindness and Deafness. WHO; 2012.
  • Celesia GG, Hickok G. The human auditory system: fundamental organization and clinical disorders. New York: Elsevier; 2015.
  • American-Speech-Language-Hearing-Association. June 23. Causes of hearing loss in adults. Available from: http://www.asha.org/public/hearing/Causes-of-Hearing-Loss-in-Adults/. Accessed 2016 June 23.
  • Ear-Science-Institute-Australia. March 8. Causes of hearing loss. Available from: http://www.earscience.org.au/Hearing-Discovery-Centre/Causes-of-HL.aspx. Accessed 2016 March 8.
  • Canalis RF, Lambert PR. The ear comprehensive otology. Philadelphia: Lippincott Williams & Wilkins; 2000.
  • American-Speech-language-hearing-association. June 28. Causes of hearing loss in children. Available from: http://www.asha.org/public/hearing/Causes-of-Hearing-Loss-in-Children/. Accessed 2016 June 28.
  • World-Health-Organization. Global data on visual impairments 2010; 2012.
  • Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368:1795–1809.
  • EBU-The-voice-of-blind-and-partially-sighted-people-in-Europe. September 9. Facts, figures and definitions concerning blindness and sight loss. Available from: http://www.euroblind.org/resources/information/. Accessed 2016 September 9.
  • Schalock M, Bull R. The 2012 national child count of children and youth who are deaf–blind. Monmouth, OR: National Consortium on Deaf-Blindness, Teaching Research Institute, Western Oregon University; 2013.
  • Blanchet C, Hamel C. 2009. Sindrome di Usher. Available from: http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=IT&Expert=886.
  • National-center-of-Deaf-Blindness. Causes of deaf-blindness. Available from: https://nationaldb.org/library/list/6.
  • Malloy P, Stremel-Thomas K, Scalock M, et al. Early identification of infants who are deaf–blind. National Consortium on Deaf-Blindness, Monmouth, OR, 2009.
  • Robertson J, Emerson E. Estimating the number of people with co-occurring vision and hearing impairments in the UK. Lancaster: Centre for Disability Research, Lancaster University; 2010.
  • Jarrold K. 2014. Mapping Opportunities for Deafblind People across Europe: Final report. Available from: http://www.deafblindindicators.eu/images/PDF/1_1Final%20report%20-Mapping%20opportunities_0315.pdf.
  • Kaczmarek KA. Sensory augmentation and substitution. In: Joseph D Bronzino, editor. CRC handbook of biomedical engineering, 2nd ed. 2000; p. 2100–2109.
  • Johansson RS, Vallbo ÅB. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol (Lond). 1979;286:283–300.
  • Kaczmarek KA, Bach-Y-Rita P. Tactile displays. Virtual Environ Adv Interface Des. 1995;349–414.
  • Jones LA, Sarter NB. Tactile displays: guidance for their design and application. Hum Factors. 2008;50:90–111.
  • Brewster S, Brown LM. Tactons: structured tactile messages for non-visual information display. Australia: Australian Computer Society, Inc; 2004. p. 15–23.
  • Allen JM, Asselin PK, Foulds R. American Sign Language finger spelling recognition system. 2003. IEEE. p 285–286.
  • Kyle JG, Woll B, Pullen G. Sign language: the study of deaf people and their language. Cambridge: Cambridge University Press; 1988.
  • Wall S, Brewster S. Feeling what you hear: tactile feedback for navigation of audio graphs. New York: ACM; 2006. p. 1123–1132.
  • Moore C, Murray I. An electronic design of a low cost braille typewriter; 2001. Australian: IEEE. p. 153–157.
  • American-Association-of-the-Deaf-Blind. 2009. How deaf–blind people communicate? Available from: http://www.aadb.org/factsheets/db_communications.html. Accessed 2016 August 8.
  • Reed CM, Rabinowitz WM, Durlach NI, et al. Research on the Tadoma method of speech communication. J Acoust Soc Am. 1985;77:247–257.
  • Gollner U, Bieling T, Joost G. Mobile Lorm Glove: introducing a communication device for deaf–blind people. New York: ACM; 2012. p. 127–130.
  • Caporusso N. A wearable Malossi alphabet interface for deafblind people. New York: ACM; 2008. p. 445–448.
  • Miyagi M, Nishida M, Horiuchi Y, et al. Analysis of prosody in finger braille using electromyography. Conf Proc IEEE Eng Med Biol Soc. 2006;1:4901–4904.
  • Matsuda Y, Isomura T. Finger Braille recognition system. New York: INTECH Open Access Publisher; 2012.
  • Spens K, Huss C, Dahlqvist M, et al. A hand held two-channel vibro-tactile speech communication aid for the deaf: characteristics and results. Scand Audiol Suppl. 1996;47:7–13.
  • Wiener N, Wiesner J, David E Jr, et al. Operation “Felix.” Quart. Progr. Repts, Cambridge; 1951.
  • Galvin KL, Mavrias G, oore A, et al. A comparison of tactaid ii and tactaid 7 use by adults with a profound hearing impairment. Ear Hear. 1999;20:471.
  • Saba MP, Filippo D, Pereira FRD, et al. Hey yaa: a haptic warning wearable to support deaf people communication. Collaboration and Technology. New York: Springer; 2011. p. 215–223.
  • Sonic-Alert. 2015 September 23. Sonic Bomb® with Super Shaker. Available from: http://www.sonicalert.com/Sonic-Bomb-with-Super-Shaker-TM-p/sbb500ss.htm. Accessed 2016 September 23.
  • Gault RH. Touch as a substitute for hearing in the interpretation and control of speech. Arch Otolaryngol—Head Neck Surg. 1926;3:121.
  • Schulte K, Fant G. Fonator system: Speech stimulation and speech feed-back by technically amplified one-channel vibrations; 1972.
  • Sherrick CE. Basic and applied research on tactile aids for deaf people: progress and prospects. J Acoust Soc Am. 1984;75:1325–1342.
  • Willemain TR, Lee FF. Tactile pitch feedback for deaf speakers. The Volta Review 1971.
  • Stratton WD. Intonation feedback for the deaf through a tactile display. The Volta Review 1974.
  • Yeni‐Komshian GH, Goldstein MH Jr. Identification of speech sounds displayed on a vibrotactile vocoder. J Acoust Soc Am. 1977;62:194–198.
  • Sparks DW, Kuhl PK, Edmonds AE, et al. Investigating the MESA (Multipoint Electrotactile Speech Aid): the transmission of segmental features of speech. J Acoust Soc Am. 1978;63:246–257.
  • Yuan H, Reed CM, Durlach NI. Tactual display of consonant voicing as a supplement to lipreading. J Acoust Soc Am. 2005;118:1003–1015.
  • Sakajiri M, Miyoshi S, Nakamura K, et al. Voice pitch control using tactile feedback for the deafblind or the hearing impaired persons to assist their singing. New York: IEEE; 2010. p. 1483–1487.
  • Sakajiri M, Miyoshi S, Onishi J, et al. Tactile pitch feedback system for deafblind or hearing impaired persons singing accuracy of hearing persons under conditions of added noise. New York: IEEE; 2014. P. 31–35.
  • Sakajiri M, Nakamura K, Fukushima S, et al. Effect of voice pitch control training using a two-dimensional tactile feedback display system. New York: IEEE; 2012. p. 2943–2947.
  • Sakajiri M, Miyoshi S, Nakamura K, et al. Voice pitch control ability of hearing persons with or without tactile feedback using a two-dimensional tactile display system. New York: IEEE; 2011. p. 1069–1073.
  • Engelmann S, Rosov R. Tactual hearing experiment with deaf and hearing subjects. Exceptional Children. 1975;41:243–253.
  • Gault RH, Crane GW. Tactual patterns from certain vowel qualities instrumentally communicated from a speaker to a subject's fingers. J Gen Psychol. 1928;1:353–359.
  • Guelke R, Huyssen R. Development of apparatus for the analysis of sound by the sense of touch. J Acoust Soc Am. 1959;31:799–809.
  • Kringlebotn M. Experiments with some visual and vibrotactile aids for the deaf. Am Ann Deaf. 1968;113:311–317.
  • Pickett J, Pickett BH. Communication of speech sounds by a tactual vocoder. J Speech Hear Res. 1963;6:207–222.
  • Brooks P, Frost BJ. Evaluation of a tactile vocoder for work recognition. J Acoust Soc Am. 1983;74:34–39.
  • Lynch MP, Eilers RE, Oller DK, et al. Speech perception by congenitally deaf subjects using an electrocutaneous vocoder. J Rehabil Res Dev. 1988;25:41–50.
  • Gescheider G. Some comparisons between touch and hearing. IEEE Trans Man Mach Syst. 1970;11:28–35.
  • Bekesy Gv. Human skin perception of traveling waves similar to those on the cochlea. J Acoust Soc Am. 1955;27:830–841.
  • Richardson B, Wuillemin D, Saunders F. Tactile discrimination of competing sounds. Percept Psychophys. 1978;24:546–550.
  • Boothroyd A. Wearable tactile sensory aid providing information on voice pitch and intonation patterns. Google Patents; 1986.
  • Boothroyd A. A wearable tactile intonation display for the deaf. IEEE Trans Acoust Speech Signal Process. 1985;33:111–117.
  • Wada C, Ino S, Ifukube T. Proposal and evaluation of the sweeping display of speech spectrum for a tactile vocoder used by the profoundly hearing impaired. Electron Commun Jpn Pt Iii. 1996;79:56–66.
  • Nanayakkara S, Wyse L, Taylor EA. The haptic chair as a speech training aid for the deaf. New York: ACM; 2012. p. 405–410.
  • Nanayakkara S, Wyse L, Taylor EA. Effectiveness of the haptic chair in speech training. New York: ACM; 2012. p. 235–236.
  • Park S. Sounzzz. Available from: http://www.yankodesign.com/2009/11/17/feel-the-music/. Accessed 2016 March 17.
  • Baijal A, Kim J, Branje C, et al. Composing vibrotactile music: a multi-sensory experience with the Emoti-chair. New York: IEEE; 2012. p. 509–515.
  • Karam M, Nespoli G, Russo F, et al. Modelling perceptual elements of music in a vibrotactile display for deaf users: a field study. New York: IEEE; 2009. p. 249–254.
  • Reinfeldt S, Håkansson B, Taghavi H, et al. New developments in bone-conduction hearing implants: a review. Med Devices (Auckl). 2015;8:79.
  • Cowan RSC, Galvin KL, Lu BD, et al. Electrotactile vocoder using handset with stimulating electrodes. Google Patents; 2002.
  • Rakowski K, Brenner C, Weisenberger JM. Evaluation of a 32‐channel electrotactile vocoder. J Acoust Soc Am. 1989;86:S83–S83.
  • Smith RV, Leslie JH Jr. Rehabilitation engineering. Boca Raton, FL: CRC Press; 1990. p. 65–68.
  • Dodgson G, Brown B, Freeston I, et al. Electrical stimulation at the wrist as an aid for the profoundly deaf. Clin Phys Physiol Meas. 1983;4:403.
  • Cowan R, Galvin K, Sarant J, et al. Improved electrotactile speech processor: Tickle Talker. Ann Otol Rhinol Laryngol. 1995;104 (suppl.166):454–456.
  • Cowan R, Alcantara J, Blamey PJ, et al. Preliminary evaluation of a multichannel electrotactile speech processor. J Acoust Soc Am. 1988;83:2328–2338.
  • Pisanski K, Cartei V, McGettigan C, et al. Voice modulation: a window into the origins of human vocal control? Trends Cogn Sci. 2016;20:304–318.
  • Geldard FA. Adventures in tactile literacy. Am Psychol. 1957;12:115.
  • O'donoghue GM, Nikolopoulos TP, Archbold SM. Determinants of speech perception in children after cochlear implantation. Lancet. 2000;356:466–468.
  • Engelmann S, Rosov RJ. Tactual hearing experiment with deaf and hearing subjects. Research Bulletin 14; 1974.
  • Goldstein MH Jr, Proctor A. Tactile aids for profoundly deaf children. J Acoust Soc Am. 1985;77:258–265.
  • Risberg A. A critical review of work on speech analyzing hearing aids. IEEE Trans Audio Electroacoust. 1969;17:290–297.
  • Biondi E, Biondi L. The sampling of sounds as a new means of making speech intelligible to the profoundly deaf. Alta Frequenza. 1968;37:180–191.
  • Johansson B. A new coding amplifier system for the severely hard of hearing; 1961. p. 655–657.
  • Risberg A, Spens K. Teaching machine for training experiments in speech perception. Speech Technol Lab Quart Rep. 1967;2:72.
  • Guttman N, Nelson JR. An instrument that creates some artificial speech spectra for the severely hard of hearing. Am Ann Deaf. 1968;113:295–302.
  • Daniel L, Druz WS. Transposition of high frequency sounds by partial vocoding of the speech spectrum: its use by deaf children. J Auditory Res. 1967;7:133–144.
  • Pimonow L. La parole synthétique et son application dans la correction auditive. New York: Springer; 1965. p. 151–171.
  • Mazzoni A, Bryan-Kinns N. Mood Glove: a haptic wearable prototype system to enhance mood music in film. Osaka, Japan: Entertainment Computing; 2016.
  • Gescheider GA. Cutaneous sound localization. J Exp Psychol. 1965;70:617.
  • Johnson KO, Phillips JR. Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition. J Neurophysiol. 1981;46:1177–1192.
  • Vallbo ÅB, Johansson R. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol. 1984;3:3–14.
  • Harkins J, Tucker PE, Williams N, et al. Vibration signaling in mobile devices for emergency alerting: a study with deaf evaluators. J Deaf Stud Deaf Educ. 2010;enq018.
  • Kim JS, Kim CH. A review of assistive listening device and digital wireless technology for hearing instruments. Korean J Audiol. 2014;18:105–111.
  • Damper R, Evans MD. A multifunction domestic alert system for the deaf–blind. IEEE Trans Rehab Eng. 1995;3:354–359.
  • Wang Y, Kuchenbecker KJ. HALO: Haptic Alerts for Low-hanging Obstacles in white cane navigation. New York: IEEE; 2012. p. 527–532.
  • Dakopoulos D, Bourbakis NG. Wearable obstacle avoidance electronic travel aids for blind: a survey. IEEE Trans Syst Man Cybern C. 2010;40:25–35.
  • Ram S, Sharf J. The people sensor: a mobility aid for the visually impaired. New York: IEEE; 1998. p. 166–167.
  • Sunu-Inc. 2015. Sunu Band. Available from: http://sunu.io/. Accessed 2016 June 18.
  • Kammoun S, Jouffrais C, Guerreiro T, et al. Guiding blind people with haptic feedback. Frontiers in Accessibility for Pervasive Computing (Pervasive 2012), vol. 3; 2012.
  • Mann S, Huang J, Janzen R, et al. Blind navigation with a wearable range camera and vibrotactile helmet. New York: ACM; 2011. p. 1325–1328.
  • Dakopoulos D, Boddhu SK, Bourbakis N. A 2D vibration array as an assistive device for visually impaired. New York: IEEE; 2007. p. 930–937.
  • Adjouadi M. A man-machine vision interface for sensing the environment. J Rehabil Res Dev. 1992;29:57–76.
  • Kaczmarek K, Webster JG, Bach-y-Rita P, et al. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng. 1991;38:1–16.
  • Akhter S, Mirsalahuddin J, Marquina F, et al. A smartphone-based haptic vision substitution system for the blind. New York: IEEE; 2011. p. 1–2.
  • Gemperle F, Ota N, Siewiorek D. Design of a wearable tactile display. New York: IEEE. 2001. p. 5–12.
  • Jones LA, Lockyer B, Piateski E. Tactile display and vibrotactile pattern recognition on the torso. Adv Robot. 2006;20:1359–1374.
  • Van Veen H, Van Erp JB. Providing directional information with tactile torso displays; 2003. p. 471–474.
  • McDaniel T, Krishna S, Balasubramanian V, et al. Using a haptic belt to convey non-verbal communication cues during social interactions to individuals who are blind. New York: IEEE. 2008. p. 13–18.
  • Van Erp JB, Van Veen HA, Jansen C, et al. Waypoint navigation with a vibrotactile waist belt. ACM Trans Appl Percept. 2005;2:106–117.
  • Rose C, Pierce D, Sherman A. Interactive Navigation System for the Visually Impaired with Auditory and Haptic Cues in Crosswalks, Indoors and Urban Areas. HCI International 2015-Posters’ Extended Abstracts. New York: Springer; 2015. p 539–545.
  • Flores G, Kurniawan S, Manduchi R, et al. Vibrotactile guidance for wayfinding of blind walkers. IEEE Trans Haptics. 2015;8:306–317.
  • Gilson S, Gohil S, Khan F, et al. A wireless navigation system for the visually impaired, vol. 2015, 2015.
  • Tsukada K, Yasumura M. Activebelt: belt-type wearable tactile display for directional navigation. UbiComp 2004: Ubiquitous Computing. New York: Springer; 2004. p. 384–399.
  • Nagel SK, Carl C, Kringe T, et al. Beyond sensory substitution-learning the sixth sense. J Neural Eng. 2005;2:13–26.
  • Wu J, Song Z, Wu W, et al. A vibro-tactile system for image contour display. New York: IEEE. 2011. p. 145–150.
  • Johnson L, Higgins CM. A navigation aid for the blind using tactile-visual sensory substitution. New York: IEEE. 2006. p. 6289–6292.
  • Ducere-Technologies. 2011. Lechal. Available from: http://lechal.com/. Accessed 2016 March 10.
  • Velázquez R, Bazán O, Alonso C, et al. Vibrating insoles for tactile communication with the feet. New York: IEEE. 2011. p. 118–123.
  • Velãzquez R, Bazán O, Magaña M. A shoe-integrated tactile display for directional navigation. New York: IEEE; 2009. p. 1235–1240.
  • Velázquez R, Bazán O. Preliminary evaluation of podotactile feedback in sighted and blind users. New York: IEEE; 2010. p. 2103–2106.
  • Zhang J, Lip CW, Ong S-K, et al. A multiple sensor-based shoe-mounted user interface designed for navigation systems for the visually impaired. New York: IEEE; 2010. p. 1–8.
  • Abu-Faraj Z, Jabbour E, Ibrahim P, et al. Design and development of a prototype rehabilitative shoes and spectacles for the blind. New York: IEEE; 2012. p. 795–799.
  • Lobo L, Travieso D, Barrientos A, et al. Stepping on obstacles with a sensory substitution device on the lower leg: practice without vision is more beneficial than practice with vision. PLoS One. 2014;9:e98801.
  • Grathio-Labs. 2011. Meet The Tacit Project. It’s Sonar For The Blind. Available from: http://grathio.com/2011/08/meet-the-tacit-project-its-sonar-for-the-blind/. Accessed 2016 July 30.
  • Wormald International Sensory Aids, Horseshoe Bar Rd., Loomis, 95650 C. Mowat Sensor.
  • Ghiani G, Leporini B, Paternò F. Vibrotactile feedback as an orientation aid for blind users of mobile guides. New York: ACM; 2008. p. 431–434.
  • Kim Y, Harders M, Gassert R. Identification of vibrotactile patterns encoding obstacle distance information. IEEE Trans Haptics. 2015;8:298–305.
  • Gallo S, Chapuis D, Santos-Carreras L, et al. Augmented white cane with multimodal haptic feedback. New York: IEEE; 2010. p. 149–155.
  • Fanucci L, Roncella R, Iacopetti F, et al. Improving Mobility of Pedestrian Visually-Impaired Users; 2011.
  • BlindMaps.org. 2014. Haptic White Cane. Available from: http://www.blindmaps.org/prototypes/. Accessed 2016 May 21.
  • Sound-Foresight-Technology-Ltd. September 16. The UltraCane - an award winning mobility aid. Available from: http://www.ultracane.com/about_the_ultracane. Accessed 2016 September 16.
  • Scalise L, Primiani VM, Shahu DD, et al. Electromagnetic aids for visually impaired users. ICEmB II Convegno Nazionale, “Interazioni fra campi elettromagnetici e biosistemi,” Bologna; 2012.
  • Calder DJ. Ecological solutions for the blind. New York: IEEE; 2010. p. 625–630.
  • Eyes-Free-Project. 2011. WalkyTalky. Available from: https://play.google.com/store/apps/details?id=com.googlecode.eyesfree.walkytalky. Accessed 2016 May 3.
  • Amemiya T, Sugiyama H. Design of a haptic direction indicator for visually impaired people in emergency situations. In: Springer, editor. Computers Helping People with Special Needs. Volume 5105, Lecture Notes in Computer Science. New York: Springer; 2008. p. 1141–1144.
  • Ortigoza-Ayala L, Ruiz-Huerta L, Caballero-Ruiz A, et al. Artificial vision for the human blind, vol. 47. Mexico: Revista Medica Del Instituto Mexicano Del Seguro Social; 2008. p. 393–398.
  • Ortigoza-Ayala L, Ruiz-Huerta L, Caballero-Ruiz A, et al. Prótesis de substitución sensorial visual para pacientes ciegos. Rev Mex Oftalmol. 2009;83:235–238.
  • Zelek J, Audette R, Balthazaar J, et al. A stereo-vision system for the visually impaired, vol. 1999. Guelph: University of Guelph; 1999. p. 1–9.
  • Google-Inc. 2013. BrailleBack. Available from: https://play.google.com/store/apps/details?id=com.googlecode.eyesfree.brailleback. Accessed 2016 27 September.
  • Oliveira J, Guerreiro T, Nicolau H, et al. BrailleType: unleashing braille over touch screen mobile phones. Human-computer interaction–INTERACT 2011. New York: Springer; 2011. p. 100–107.
  • Azenkot S, Fortuna E. Improving public transit usability for blind and deaf–blind people by connecting a braille display to a smartphone. New York: ACM; 2010. p. 317–318.
  • Nakamura M, Jones L. An actuator for the tactile vest-a torso-based haptic device. New York: IEEE; 2003. p. 333–339.
  • Jones L, Nakamura M, Lockyer B. Development of a tactile vest. New York: IEEE; 2004. p. 82–89.
  • Velázquez R, Fontaine E, Pissaloux E. Coding the environment in tactile maps for real-time guidance of the visually impaired. New York: IEEE; 2006. p. 1–6.
  • Arcara PD, Stefano L, Mattoccia S, et al. Perception of depth information by means of a wire-actuated haptic interface. New York: IEEE; 2000. p. 3443–3448.
  • Akita J, Komatsu T, Ito K, et al. CyARM: haptic sensing device for spatial localization on basis of exploration by arms. Adv Hum-Comput Interact. 2009;2009:6.
  • Yuan D, Manduchi R. A tool for range sensing and environment discovery for the blind. New York: IEEE; 2004. p. 39.
  • Park CH, Ryu E-S, Howard A. Telerobotic haptic exploration in art galleries and museums for individuals with visual impairments. IEEE Trans Haptics. 2014;8:327–338.
  • Loscos C, Tecchia F, Frisoli A, et al. The Museum of Pure Form: touching real statues in an immersive virtual museum; 2004. p. 271–279.
  • Russomanno A, O'Modhrain S, Gillespie R, et al. Refreshing refreshable Braille displays; 2015.
  • Bach-y-Rita p. Neurophysiological basis of a tactile vision-substitution system. IEEE Trans Man Mach Syst. 1970;11:108–110.
  • Bach-Y-Rita P, Collins CC, Saunders FA, et al. Vision substitution by tactile image projection. Nature. 1969;221:963–964.
  • Bach-y-Rita P, Tyler ME, Kaczmarek KA. Seeing with the brain. Int J Hum–Comput Interact. 2003;15:285–295.
  • Gardner EP, Palmer CI. Simulation of motion on the skin. I. Receptive fields and temporal frequency coding by cutaneous mechanoreceptors of OPTACON pulses delivered to the hand. J Neurophysiol. 1989;62:1410–1436.
  • Goldish LH, Taylor HE. The Optacon: a valuable device for blind persons. New Outlook Blind. 1974;68:49–56.
  • Humanware. April 25. BrailleNote. Available from: http://store.humanware.com/europe/brailliant-bi-32-new-generation.html. Accessed 2016 April 25.
  • Smithmaitrie P, Kanjantoe J, Tandayya P. Touching force response of the piezoelectric Braille cell. Disabil Rehabil: Assist Technol. 2008;3:360–365.
  • Lévesque V, Pasquero J, Hayward V, et al. Display of virtual braille dots by lateral skin deformation: feasibility study. ACM Trans Appl Percept. 2005;2:132–149.
  • Hayward V, Cruz-Hernandez M. Tactile display device using distributed lateral skin stretch; 2000, p. 1309–1314.
  • Hayward V, Terekhov AV, Wong S-C, et al. Spatio-temporal skin strain distributions evoke low variability spike responses in cuneate neurons. J R Soc Interface. 2014;11.
  • Jörntell H, Bengtsson F, Geborek P, et al. Segregation of tactile input features in neurons of the cuneate nucleus. Neuron. 2014;83:1444–1452.
  • Pasquero J, Hayward V. STReSS: a practical tactile display system with one millimeter spatial resolution and 700 Hz refresh rate. Dublin, Ireland; 2003. p. 94–110.
  • Bliss JC, Katcher MH, Rogers CH, et al. Optical-to-tactile image conversion for the blind. IEEE Trans Man Mach Syst. 1970;11:58–65.
  • Kobayashi M, Watanabe T. A tactile display system equipped with a pointing device—MIMIZU. Computers helping people with special needs. New York: Springer; 2002. p. 527–534.
  • Homma T, Ino S, Kuroki H, et al. Development of a piezoelectric actuator for presentation of various tactile stimulation patterns to fingerpad skin. New York: IEEE. 2004. p. 4960–4963.
  • Chouvardas VG, Miliou AN, Hatalis MK. Tactile display applications: a state of the art survey. Citeseer; 2005. p. 290–303.
  • O'Modhrain S, Giudice N, Gardner J, et al. Designing media for visually-impaired users of refreshable touch displays: possibilities and pitfalls. IEEE Trans Haptics. 2015;8:248–257.
  • Metec. 2007. HyperBraille: The Project. Available from: http://www.hyperbraille.de/project/?lang=en. Accessed 2016 July 10.
  • Koo IM, Jung K, Koo JC, et al. Development of soft-actuator-based wearable tactile display. IEEE Trans Robot. 2008;24:549–558.
  • Haga Y, Makishi W, Iwami K, et al. Dynamic Braille display using SMA coil actuator and magnetic latch. Sens Actuators A Phys. 2005;119:316–322.
  • Yobas L, Durand DM, Skebe GG, et al. A novel integrable microvalve for refreshable Braille display system. J Microelectromech Syst. 2003;12:252–263.
  • Lee JS, Lucyszyn S. A micromachined refreshable Braille cell. J Microelectromech Syst. 2005;14:673–682.
  • Tactus-Technology-Inc. 2009. Phorm. Available from: https://www.getphorm.com/; http://tactustechnology.com/technology/. Accessed 2016 September 27.
  • Cunha JCd, Bordignon LA, Nohama P. Tactile communication using a CO 2 flux stimulation for blind or deafblind people. New York: IEEE; 2010. p. 5871–5874.
  • Cunha J, Nohama P. A novel instrumentation to investigate the alternative tactile communication through mechanical stimulation using CO2 jets. New York: Springer; 2015. p. 35–38.
  • Visell Y. Tactile sensory substitution: models for enaction in HCI. Interact Comput. 2009;21:38–53.
  • Garland C. Sensory devices for the blind. J Med Eng Technol. 1977;1:319–323.
  • Minagawa H, Ohnishi N, Sugie N. Tactile-audio diagram for blind persons. IEEE Trans Rehabil Eng. 1996;4:431–437.
  • Plimmer B, Reid P, Blagojevic R, et al. Signing on the tactile line: a multimodal system for teaching handwriting to blind children. ACM Trans Comput–Hum Interact. 2011;18:17.
  • Schloerb DW, Lahav O, Desloge JG, et al. BlindAid: virtual environment system for self-reliant trip planning and orientation and mobility training. New York: IEEE; 2010. p. 363–370.
  • Johnson KA, Semwal SK. Shapes: a multi-sensory environment for the B/VI and hearing impaired community. Minneapolis, MN: IEEE; 2014. p. 1–6.
  • Schwerdt HN, Tapson J, Etienne-Cummings R. A color detection glove with haptic feedback for the visually disabled. New York: IEEE; 2009. p. 681–686.
  • Cappelletti L, Ferri M, Nicoletti G. Vibrotactile color rendering for the visually impaired within the VIDET project. Bellingham: International Society for Optics and Photonics; 1998. p. 92–96.
  • Collins CC. Tactile television-mechanical and electrical image projection. IEEE Trans Man Mach Syst. 1970;11:65–71.
  • Klein D, Rensink D, Freimuth H, et al. Modelling the response of a tactile array using electrorheological fluids. J Phys D: Appl Phys. 2004;37:794.
  • Chouvardas V, Miliou A, Hatalis M. Tactile displays: overview and recent advances. Displays. 2008;29:185–194.
  • Xu C, Israr A, Poupyrev I, et al. Tactile display for the visually impaired using TeslaTouch. New York: ACM; 2011. p. 317–322.
  • Eberhardt SP, Bernstein LE, Coulter DC, et al. A haptic display for speech perception by deaf and deaf–blind individuals. New York: IEEE; 1993. p. 195–201.
  • Sarkar R, Das S, Roy S. SPARSHA: a low cost refreshable braille for deaf–blind people for communication with deaf–blind and non-disabled persons. Distributed computing and internet technology. New York: Springer; 2013. p. 465–475.
  • Caporusso N, Mkrtchyan L, Badia L. A multimodal interface device for online board games designed for sight-impaired people. IEEE Trans Inform Technol Biomed. 2010;14:248–254.
  • Ross DA, Blasch BB. Wearable interfaces for orientation and wayfinding. New York: ACM; 2000. p. 193–200.
  • Ohtsuka S, Hasegawa S, Sasaki N, et al. Communication system between deaf–blind people and non-disabled people using body-braille and infrared communication. New York: IEEE; 2010. p. 1–2.
  • Jayant C, Acuario C, Johnson W, et al. V-braille: haptic braille perception using a touch-screen and vibration on mobile phones. New York: ACM; 2010. p. 295–296.
  • Khambadkar V, Folmer EA. tactile-proprioceptive communication aid for users who are deafblind. New York: IEEE; 2014. p. 239–245.
  • Ramirez-Garibay F, Millan Olivarria C, Eufracio Aguilera AF, et al. MyVox—device for the communication between people: blind, deaf, deaf–blind and unimpaired. New York: IEEE; 2014. p. 506–509.
  • Amemiya T, Yamashita J, Hirota K, et al. Virtual leading blocks for the deaf–blind: A real-time way-finder by verbal-nonverbal hybrid interface and high-density RFID tag space. New York: IEEE; 2004. p. 165–287.
  • Hirose M, Amemiya T. Wearable finger-braille interface for navigation of deaf–blind in ubiquitous barrier-free space; 2003. p. 1417–1421.
  • Shah C, Bouzit M, Youssef M, et al. Evaluation of ru-netra-tactile feedback navigation system for the visually impaired. New York: IEEE; 2006. p. 72–77.
  • Bouzit M, Chaibi AD, Laurentis K, et al. Tactile feedback navigation handle for the visually impaired. USA: American Society of Mechanical Engineers; 2004. p. 1171–1177.
  • Schmitz B, Ertl T. Making Digital Maps accessible using vibrations. Computers helping people with special needs. New York: Springer; 2010. p. 100–107.
  • Cardin S, Thalmann D, Vexo F. A wearable system for mobility improvement of visually impaired people. Tvc. 2007;23:109–118.
  • Max ML, Gonzalez JR. Blind persons navigate in virtual reality (VR); hearing and feeling communicates ‘reality’. Stud Health Technol Inform. 1996;39:54–59.
  • Hersh M, Johnson MA, Mobility: an overview. Clear-path indicators. In: Johnson MAHaMA, editor. Assistive technology for visually impaired and blind people. New York: Springer Science & Business Media; 2010. p. 192–193.
  • Sarkar R, Das S, Rudrapal DA. Low cost microelectromechanical Braille for blind people to communicate with blind or deaf blind people through SMS subsystem. New York: IEEE; 2013. p. 1529–1532.
  • Choudhary T, Kulkarni S, Reddy PA. Braille based mobile communication and translation glove for deaf–blind people. New York: IEEE; 2015. p. 1–4.
  • Vincent C, Routhier F, Martel V, et al. Field testing of two electronic mobility aid devices for persons who are deaf–blind. Disabil Rehabil: Assist Technol. 2014;9:414–420.
  • Ogrinc M, Farkhatdinov I, Walker R, et al. Deaf–blind can practise horse riding with the help of haptics. New York: Springer; 2016. p. 452–461.
  • Spiers A, Dollar A. Design and evaluation of shape-changing haptic interfaces for pedestrian navigation assistance; 2016.
  • Kramer JP, Lindener P, George WR. Communication system for deaf, deaf–blind, or non-vocal individuals using instrumented glove. Google Patents; 1991.
  • Sorgini F, Mazzoni A, Massari L, et al. Encapsulation of piezoelectric transducers for sensory augmentation and substitution with wearable haptic devices. Micromachines. 2017;8:270.
  • Russo LO, Airò Farulla G, Pianu D, et al. PARLOMA – a novel human–robot interaction system for deaf–blind remote communication. Int J Adv Robot Syst. 2015;12:57.
  • Farulla GA, Russo LO, Pintor C, et al. Real-time single camera hand gesture recognition system for remote deaf–blind communication. Augmented and virtual reality. New York: Springer; 2014. p. 35–52.
  • Murphy K, Darrah M. Haptics-based Apps for middle school students with visual impairments. IEEE Trans Haptics. 2015;8:318–326.
  • Nicolau H, Guerreiro J, Guerreiro T, et al. UbiBraille: designing and evaluating a vibrotactile Braille-reading device. New York: ACM; 2013. p. 23.
  • Dictionary M-W. September 04. Definition of Disability. Available from: https://www.merriam-webster.com/dictionary/disability. Accessed 2017 September 04.
  • Goldstein M, Proctor A, Bulle L, et al. Tactile stimulation in speech reception: Experience with a nonauditory child. Speech of the hearing impaired: research training and personal preparation; 1983:147–166.
  • Pickett J. Speech communication for the deaf: visual, tactile, and cochlear-implant. J Rehabil Res Dev. 1986;23:95–99.
  • Pickett J, McFarland W. Auditory implants and tactile aids for the profoundly deaf. J Speech Hear Res. 1985;28:134–150.
  • Miyamoto RT, Robbins AM, Osberger MJ, et al. Comparison of multichannel tactile aids and multichannel cochlear implants in children with profound hearing impairments. Otol Neurotol. 1995;16:8–13.
  • Osberger MJ, Robbins AM, Miyamoto RT, et al. Speech perception abilities of children with cochlear implants, tactile aids, or hearing aids. Otol Neurotol. 1991;12:105–115.
  • Tang H, Beebe DJ. An oral tactile interface for blind navigation. IEEE Trans Neural Syst Rehabil Eng. 2006;14:116–123.
  • Bolanowski SJ Jr, Gescheider GA, Verrillo RT, et al. Four channels mediate the mechanical aspects of touch. J Acoust Soc Am. 1988;84:1680–1694.
  • Johansson RS. Tactile sensibility in the human hand: receptive field characteristics of mechanoreceptive units in the glabrous skin area. J Physiol (Lond). 1978;281:101–125.
  • Weinstein S. Intensive and extensive aspects of tactile sensitivity as a function of body part, sex and laterality; 1968.
  • Van Boven RW, Hamilton RH, Kauffman T, et al. Tactile spatial resolution in blind Braille readers. Neurology. 2000;54:2230–2236.
  • Heinrichs R, Moorhouse J. Touch-perception thresholds in blind diabetic subjects in relation to the reading of Braille type. N Engl J Med. 1969;280:72–75.
  • Stevens JC, Foulke E, Patterson MQ. Tactile acuity, aging, and braille reading in long-term blindness. J Exp Psychol: Appl. 1996;2:91.
  • Grant AC, Thiagarajah MC, Sathian K. Tactile perception in blind Braille readers: a psychophysical study of acuity and hyperacuity using gratings and dot patterns. Percept Psychophys. 2000;62:301–312.
  • Hollins M. Understanding blindness: an integrative approach. Mahwah, NJ: Lawrence Erlbaum Associates, Inc; 1989.
  • Collins CC. On mobility aids for the blind. Electronic spatial sensing for the blind. New York: Springer; 1985. p. 35–64.
  • Lévesque V. Blindness, technology and haptics. Cim technical report (cim-tr-05.08). Canada: McGill University; 2005.
  • Gori M, Cappagli G, Tonelli A, et al. Devices for visually impaired people: high technological devices with low user acceptance and no adaptability for children. Neurosci Biobehav Rev. 2016;69:79–88.
  • Saunders GH, Echt KV. An overview of dual sensory impairment in older adults: perspectives for rehabilitation. Trends Amplif. 2007;11:243–258.
  • Hollins M. Attitudes and emotional reactions to blindness. Understanding blindness: an integrative approach. Mahwah, NJ: Lawrence Erlbaum Associates, Inc; 1989.
  • Hersh M. Deafblind people, stigma and the use of assistive communication and mobility devices. Technol Disabil. 2013;25:245–261.
  • Cochlear. 2016. Hearing aids. Available from: http://www.cochlear.com/wps/wcm/connect/intl/home/understand/hearing-and-hl/hl-treatments/hearing-aids.
  • Link H. 2016. Middle ear implants. Available from: http://www.hearinglink.org/your-hearing/implants/middle-ear-implants/.
  • MEDel. 2016. Candidacy for Middle Ear Implants. Available from: http://www.medel.com/us/candidacy-middle-ear-implants/.
  • Cochlear. 2016. Cochlear implants. Available from: http://www.cochlear.com/wps/wcm/connect/intl/home/understand/hearing-and-hl/hl-treatments/cochlear-implant.
  • Cochlear. 2016. Electro-acoustic implants. Available from: http://www.cochlear.com/wps/wcm/connect/intl/home/understand/hearing-and-hl/hl-treatments/electro-acoustic-implant.
  • Hagr A. BAHA: bone-anchored hearing aid. Int J Health Sci (Qassim). 2007;1:265.
  • Yawn R, Hunter JB, Sweeney AD, et al. Cochlear implantation: a biomechanical prosthesis for hearing loss. F1000prime Rep. 2015;7.
  • Lewis PM, Ackland HM, Lowery AJ, et al. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 2015;1595:51–73.
  • Rizzo S, Belting C, Cinelli L, et al. The Argus II Retinal Prosthesis: 12-month outcomes from a single-study center. Am J Ophthalmol. 2014;157:1282–1290.
  • Biran R, Martin DC, Tresco PA. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol. 2005;195:115–126.
  • Edel DJ, Toi V, McNeil VM, et al. Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans Biomed Eng. 1992;39:635–643.
  • Azemi E, Lagenaur CF, Cui XT. The surface immobilization of the neural adhesion molecule L1 on neural probes and its effect on neuronal density and gliosis at the probe/tissue interface. Biomaterials. 2011;32:681–692.
  • McConnell GC, Rees HD, Levey AI, et al. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J Neural Eng. 2009;6:056003.
  • McCreery D, Pikov V, Troyk PR. Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. J Neural Eng. 2010;7:036005.
  • Zrenner E. Will retinal implants restore vision? Science. 2002;295:1022–1025.
  • Weisenberger JM, Broadstone SM, Saunders FA. Evaluation of two multichannel tactile aids for the hearing impaired. J Acoust Soc Am. 1989;86:1764–1775.
  • Bach-y-Rita P, Kaczmarek KA, Tyler ME, et al. Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. J Rehabil Res Dev. 1998;35:427–430.
  • Meers S, Ward K. A substitute vision system for providing 3D perception and GPS navigation via electro-tactile stimulation. Proceedings of the International Conference on Sensing Technology, Palmerston North, New Zealand, 2005.
  • O’Modhrain MS, Gillespie B. The moose: a haptic user interface for blind persons; 1997.
  • Sensable. 2015. Phantom Omni ® Haptic Device. Available from: http://www.dentsable.com/haptic-phantom-omni.htm. Accessed 2016 April 12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.