819
Views
16
CrossRef citations to date
0
Altmetric
Review Article

An overview of robotic/mechanical devices for post-stroke thumb rehabilitation

ORCID Icon & ORCID Icon
Pages 683-703 | Received 07 Jun 2017, Accepted 05 Jan 2018, Published online: 15 Jan 2018

References

  • Mackay J, Mensah G. The atlas of heart disease and stroke: Global burden of stroke. Geneva, Switzerland,2004.
  • Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8:741–754.
  • Zorowitz RD, Chen E, Tong KB, et al. Costs and rehabilitation use of stroke survivors: a retrospective study of Medicare beneficiaries. Top Stroke Rehabil. 2009;16:309–320.
  • Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3:528–536.
  • Paolucci S, Bragoni M, Coiro P, et al. Quantification of the probability of reaching mobility independence at discharge from a rehabilitation hospital in nonwalking early ischemic stroke patients: a multivariate study. Cerebrovasc Dis. 2008;26:16–22.
  • Olney SJ, Richards C. Hemiparetic gait following stroke. Part I: Characteristics. Gait & Posture. 1996;4:136–148.
  • Hendricks HT, van Limbeek J, Geurts AC, et al. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2002;83:1629–1637.
  • Wade DT, Hewer RL. Functional abilities after stroke: measurement, natural history and prognosis. J Neurol Neurosurg Psychiatry. 1987;50:177–182.
  • Lai SM, Studenski S, Duncan PW, et al. Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke 2002;33:1840–1844.
  • Knutson JS, Harley MY, Hisel TZ, et al. Improving hand function in stroke survivors: a pilot study of contralaterally controlled functional electric stimulation in chronic hemiplegia. Arch Phys Med Rehabil. 2007;88:513–520.
  • Kwakkel G, Kollen B, an der Grond J, et al. Probability of regaining dexterity in the flaccid upper limb. The impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34:2181–2186.
  • Houwink A, Nijland RH, Geurts AC, et al. Functional recovery of the paretic upper limb after stroke: who regains hand capacity?. Arch Phys Med Rehabil. 2013;94:839–844.
  • Kwakkel G, Kollen B. Predicting improvement in the upper paretic limb after stroke: a longitudinal prospective study. Restor Neurol Neurosci. 2007;25:453–460.
  • Engelberg AL. Guides to the evaluation of permanent impairment. Chicago: American Medical Association; 1988.
  • Braido P, Zhang X. Quantitative analysis of finger motion coordination in hand manipulative and gestic acts. Hum Mov Sci. 2004;22:661–678.
  • Givissis P, Stavridis SI, Ditsios K, et al. One-stage thumb lengthening with use of an osteocutaneous 2nd metacarpal flap. Strat Traum Limb Recon. 2009;4:135–139.
  • Elbeshbeshy B, Paksima N. Post-traumatic thumb reconstruction. Bull Hosp Jt Dis. 2001;60:130–133.
  • Taub E, Uswatte G, Mark VW, et al. The learned nonuse phenomenon: implications for rehabilitation. Eur Medicophys. 2006;42:241–256.
  • Kwakkel G, Kollen BJ, Wagenaar RC. Therapy impact on functional recovery in stroke rehabilitation: a critical review of the literature. Physiotherapy. 1999;85:377–391.
  • Yavuzer G, Selles R, Sezer N, et al. Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2008;89:393–398.
  • Oujamaa L, Relave I, Froger J, et al. Rehabilitation of arm function after stroke. Literature review. Ann Phys Rehabil Med. 2009;52:269–293.
  • Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377:1693–1702.
  • Johansson BB. Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurol Scand. 2011;123:147–159.
  • Arya KN, Pandian S, Verma R, et al. Movement therapy induced neural reorganization and motor recovery in stroke: a review. J Bodyw Movem Ther. 2011;15:528–537.
  • Brewer L, Horgan F, Hickey A, et al. Stroke rehabilitation: recent advances and future therapies. Q J Med. 2013;106:11–25.
  • Kalra L. Stroke rehabilitation 2009: old chestnuts and new insights. Stroke. 2010;41:e88–e90.
  • Dobkin BH, Dorsch A. New evidence for therapies in stroke rehabilitation. Curr Atheroscler Rep. 2013;15:331.
  • van Peppen RPS, Kwakkel G, Wood-Dauphinee S, et al. The impact of physical therapy on functional outcomes after stroke: what's the evidence?. Clin Rehabil. 2004;18:833–862.
  • Quinn TJ, Paolucci S, Sunnerhagen KS, et al. Evidence-based stroke rehabilitation: an expanded guidance document from the European stroke organisation (ESO) guidelines for management of ischaemic stroke and transient ischaemic attack 2008. J Rehabil Med. 2009;41:99–111.
  • Pollock A, Farmer SE, Brady MC, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014;11:CD010820.
  • Veerbeek JM, van Wegen E, van Peppen R, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9:e87987.
  • Kwakkel G, Wagenaar RC, Twisk JW, et al. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet. 1999;354:191–196.
  • Waddell KJ, Birkenmeier RL, Moore JL, et al. Feasibility of high-repetition, task-specific training for individuals with upper-extremity paresis. Am J Occup Ther. 2014;68:444–453.
  • Teasell R, Foley N, Hussein N, Speechley M. The elements of stroke rehabilitation. London: Evidence-Based Review of Stroke Rehabilitation; 2013.
  • Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, et al. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43:171–184.
  • Sale P, Franceschini M, Mazzoleni S, et al. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J Neuroeng Rehabil. 2014;11:1–8.
  • Kutner NG, Zhang R, Butler AJ, et al. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial. Phys Ther. 2010;90:493–504.
  • Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010;23:661–670.
  • Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22:111–121.
  • Masiero S, Celia A, Rosati G, et al. Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil. 2007;88:142–149.
  • Liao W-W, Wu C-Y, Hsieh Y-W, et al. Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clin Rehabil. 2012;26:111–120.
  • Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EEH, et al. Effects of robot-assisted therapy for the upper limb after stroke: a systematic review and meta-analysis. Neurorehabil Neural Repair. 2017;31:107–121.
  • Heo P, Gu GM, Lee S-J, et al. Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int J Precis Eng Manuf. 2012;13:807–824.
  • Chang WH, Kim YH. Robot-assisted therapy in stroke rehabilitation. J Stroke. 2013;15:174–181.
  • Iqbal J, Baizid K. Stroke rehabilitation using exoskeleton-based robotic exercisers: mini review. Biomed Res. 2015;26:197–201.
  • Lum PS, Godfrey SB, Brokaw EB, et al. Robotic approaches for rehabilitation of hand function after stroke. Am J Phys Med Rehabil. 2012;91:S242–S254.
  • Maciejasz P, Eschweiler J, Gerlach-Hahn K, et al. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3.
  • Basteris A, Nijenhuis S, Stienen A, et al. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 2014;11:111.
  • Gopura RARC, Kiguchi K. Mechanical designs of active upper-limb exoskeleton robots: state-of-the-art and design difficulties. Proceedings of the IEEE 11th International Conference on Rehabilitation Robotics; 2009 June 23–26; Kyoto, Japan: IEEE. P. 178–187.
  • Gopura R, Bandara D, Kiguchi K, et al. Developments in hardware systems of active upper-limb exoskeleton robots: a review. Robot Auton Syst. 2015;75:203–220.
  • Troncossi M, Mozaffari-Foumashi M, Parenti-Castelli V. An original classification of rehabilitation hand exoskeletons. J Robot Mech Eng Res. 2016;1:17–29.
  • Ueki S, Kawasaki H, Ito S, et al. Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Trans Mechatron. 2012;17:136–146.
  • Cempini MD, Rossi SMM, Lenzi T, et al. Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation. IEEE International Conference on Rehabilitation Robotics (ICORR); 2013 June 24–26; Seattle, WA: IEEE. p. 1–6.
  • Tong KY, Ho SK, Pang PK, et al. An intention driven hand functions task training robotic system. Conference proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBS); 2010; Buenos Aires, Argentina: IEEE. p. 3406–3409.
  • Iqbal J, Tsagarakis NG, Fiorilla AE, Caldwell DG. A portable rehabilitation device for the Hand. Conference proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBS); 2010; Buenos Aires, Argentina: IEEE. p. 3694–3697.
  • Bouzit M, Burdea G, Popescu G, et al. The Rutgers Master II-new design force-feedback glove. IEEE/ASME Trans Mechatron. 2002;7:256–263.
  • Jenkins WM, Merzenich MM. Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Prog Brain Res. 1987;71:249–266.
  • Masiero S, Carraro E. Upper limb movements and cerebral plasticity in post-stroke rehabilitation. Aging Clin Exp Res. 2008;20:103–108.
  • Marchal-Crespo L, Reinkensmeyer D. Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil. 2009;6:20.
  • Norton RL. Design of machinery: an introduction to the synthesis and analysis of mechanisms and machines . London: McGraw-Hill; 1999. 809 p.
  • Guo S, Zhang F, Wei W, Zhao F, Wang Y. Kinematic analysis of a novel exoskeleton finger rehabilitation robot for stroke patients. Mechatronics and Automation (ICMA), 2014 IEEE International Conference on; 2014 Aug 3–6. 2014. p. 924–929.
  • Ingram JN, Kording KP, Howard IS, et al. The statistics of natural hand movements. Exp Brain Res. 2008;188:223–236.
  • Li Z-M, Tang J. Coordination of thumb joints during opposition. J Biomech. 2007;40:502–510.
  • Moran CA. Anatomy of the hand. Phys Ther. 1989;69:1007–1013.
  • Kapandji AI. The physiology of the joints, Vol. 1: Upper Limb. Edinburgh: Churchill Livingstone; 1983. 208 p.
  • Napier JR. The form and function of the carpo-metacarpal joint of the thumb. J Anat. 1955;89:362–369.
  • Pieron AP. The mechanism of the first carpometacarpal (CMC) joint. An anatomical and mechanical analysis. Acta Orthop Scand Suppl. 1973;148:1–104.
  • Fick R. Handbuch der Anatomie und Mechanik der Gelenke, Part III. Jena: G. Fisher; 1911.
  • Cooney WP, 3rd, Lucca MJ, Chao EY, et al. The kinesiology of the thumb trapeziometacarpal joint. J Bone Joint Surg Am Vol. 1981;63:1371–1381.
  • MacConaill MA. Studies in the mechanics of synovial joints. Iran J Med Sci. 1946;21:190–199.
  • Mow VC, Huiskes R. Basic orthopaedic biomechanics & mechano-biology. Philadelphia: Lippincott Williams & Wilkins; 2005.
  • Hollister A, Giurintano DJ. Thumb movements, motions, and moments. J Hand Ther. 1995;8:106–114.
  • Hollister A, Buford WL, Myers LM, et al. The axes of rotation of the thumb carpometacarpal joint. J Orthop Res. 1992;10:454–460.
  • Crisco JJ, Halilaj E, Moore DC, et al. In vivo kinematics of the trapeziometacarpal joint during thumb extension-flexion and abduction-adduction. J Hand Surg. 2015;40:289–296.
  • Cerveri P, De Momi E, Marchente M, et al. Method for the estimation of a double hinge kinematic model for the trapeziometacarpal joint using MR imaging. Comp Methods Biomech Biomed Eng. 2010;13:387–396.
  • Cerveri P, De Momi E, Marchente M, et al. In vivo validation of a realistic kinematic model for the trapezio-metacarpal joint using an optoelectronic system. Ann Biomed Eng. 2008;36:1268–1280.
  • Chang LY, Pollard NS. Method for determining kinematic parameters of the in vivo thumb carpometacarpal joint. IEEE Trans Biomed Eng. 2008;55:1897–1906.
  • Santos VJ, Valero-Cuevas FJ. Reported anatomical variability naturally leads to multimodal distributions of Denavit-Hartenberg parameters for the human thumb. IEEE Trans Biomed Eng. 2006;53:155–163.
  • Valero-Cuevas FJ, Johanson ME, Towles JD. Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J Biomech. 2003;36:1019–1030.
  • Giurintano DJ, Hollister AM, Buford WL, et al. A virtual five-link model of the thumb. Med Eng Phys. 1995;17:297–303.
  • Imaeda T, Niebur G, Cooney WP, 3rd, et al. Kinematics of the normal trapeziometacarpal joint. J Orthop Res. 1994;12:197–204.
  • Stillfried G, van der Smagt P. Movement model of a human hand based on magnetic resonance imaging (MRI). Proceedings of the International Conference on Applied Bionics and Biomechanics (ICABB); 2010; Venice, Italy.
  • Levangie PK, Norkin CC. Joint structure and function: a comprehensive analysis. Philadelphia: F.A. Davis Company; 2011.
  • Kaplan EB. The participation of the metacarpophalangeal joint of the thumb in the act of opposition. Bull Hosp Joint Dis. 1966;27:39–45.
  • Imaeda T, An KN, Cooney WP. 3rd. Functional anatomy and biomechanics of the thumb. Hand Clin. 1992;8:9–15.
  • Leversedge FJ. Anatomy and pathomechanics of the thumb. Hand Clin. 2008;24:219–229.
  • van der Hulst FPJ, Schatzle S, Preusche C, Schiele AA. Functional anatomy based kinematic human hand model with simple size adaptation. IEEE International Conference on Robotics and Automation (ICRA); 2012 May 14–18; RiverCentre, Saint Paul, Minnesota, USA: IEEE. p. 5123–5129.
  • Berme N, Paul JP, Purves WK. A biomechanical analysis of the metacarpo-phalangeal joint. J Biomech. 1977;10:409–412.
  • Shaw SJ, Morris MA. The range of motion of the metacarpophalangeal joint of the thumb and its relationship to injury. J Hand Surg Br Eur Vol. 1992;17:164–166.
  • Yoshida R, House HO, Patterson RM, et al. Motion and morphology of the thumb metacarpophalangeal joint. J Hand Surg. 2003;28:753–757.
  • Anthony CP. Textbook of anatomy and physiology. St. Louis (MO): Mosby; 1967.
  • Swanson AB. Disabling arthritis at the base of the thumb: treatment by resection of the trapezium and flexible (silicone) implant arthroplasty. J Bone Joint Surg Am. 1972;54:456–471.
  • Hirsch D, Page D, Miller D, et al. A biomechanical analysis of the metacarpophalangeal joint of the thumb. J Biomech. 1974;7:343–348.
  • Coppard BM, Lohman H. Introduction to splinting. St. Louis (MO): Elsevier Health Sciences; 2013.
  • Bronzino JD. The biomedical engineering handbook. Boca Raton (FL): CRC Press; 2006.
  • Jemec B, Verjee LS, Jain A, et al. Rotation in the interphalangeal thumb joint in vivo. J Hand Surg. 2010;35:425–429.
  • Buchholz B, Armstrong TJ, Goldstein SA. Anthropometric data for describing the kinematics of the human hand. Ergonomics 1992;35:261–273.
  • Kamper DG, Fischer HC, Cruz EG, et al. Weakness is the primary contributor to finger impairment in chronic stroke. Arch Phys Med Rehabil. 2006;87:1262–1269.
  • Lang CE, DeJong SL, Beebe JA. Recovery of thumb and finger extension and its relation to grasp performance after stroke. J Neurophysiol. 2009;102:451–459.
  • Kamper D, Rymer W. Impairment of voluntary control of finger motion following stroke: role of inappropriate muscle coactivation. Muscle Nerve. 2001;24:673–681.
  • Kamper DG, Rymer WZ. Quantitative features of the stretch response of extrinsic finger muscles in hemiparetic stroke. Muscle Nerve. 2000;23:954–961.
  • Kamper DG, Fischer HC, Conrad MO, et al. Finger-thumb coupling contributes to exaggerated thumb flexion in stroke survivors. J Neurophysiol. 2014;111:2665–2674.
  • Seo NJ, Rymer WZ, Kamper DG. Delays in grip initiation and termination in persons with stroke: effects of arm support and active muscle stretch exercise. J Neurophysiol. 2009;101:3108–3115.
  • Towles JD, Kamper DG, Rymer WZ. Lack of hypertonia in thumb muscles after stroke. J Neurophysiol. 2010;104:2139–2146.
  • Raghavan P, Petra E, Krakauer JW, et al. Patterns of impairment in digit independence after subcortical stroke. J Neurophysiol. 2006;95:369–378.
  • Jones CL, Furui W, Osswald C, et al. Control and kinematic performance analysis of an Actuated Finger Exoskeleton for hand rehabilitation following stroke. Proceedings of the 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob); 2010 Sept 26–29. Tokyo, Japan: IEEE. p. 282–287.
  • Wang F, Jones CL, Shastri M, et al. Design and evaluation of an actuated exoskeleton for examining motor control in stroke thumb. Adv Robot. 2016;30:165–177.
  • Gupta V. Kinematic analysis of a thumb-exoskeleton system for post-stroke rehabilitation. Thesis. Faculty of the Graduate School of Vanderbilt University, Nashville (TN); 2010.
  • Furui W, Shastri M, Jones CL, et al. Design and control of an actuated thumb exoskeleton for hand rehabilitation following stroke. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA); 2011 May 9–13; Shangai, China: IEEE. p. 3688–3693.
  • Burton TW, Vaidyanathan R, Burgess S, et al. Sensitivity analysis of a parametric hand exoskeleton designed to match natural human grasping motion. In: Herrmann G, Studley M, Pearson M, et al. editors. Advances in autonomous robotics. Volume 7429, Lecture Notes in Computer Science. Berlin Heidelberg: Springer; 2012. p. 390–401.
  • Burton T, Vaidyanathan R, Burgess S, et al. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton. IEEE Int Conf Rehabil Robot. 2011;2011:5975344.
  • Huang YY, Low KH. Initial analysis and design of an assistive rehabilitation hand device with free loading and fingers motion visible to subjects. IEEE International Conference on Systems, Man and Cybernetics, 2008. SMC 2008; 2008 Oct 12–15. p. 2584–2590.
  • Cempini M, Marzegan A, Rabuffetti M, et al. Analysis of relative displacement between the HX wearable robotic exoskeleton and the user's hand. J Neuroeng Rehabil. 2014;11:147.
  • Cempini M, Cortese M, Vitiello N. A powered finger-thumb wearable hand exoskeleton with self-aligning joint axes. IEEE/ASME Trans Mechatron. 2015;20:705–716.
  • Cortese M, Cempini M, de Almeida Ribeiro PR, et al. A mechatronic system for robot-mediated hand telerehabilitation. IEEE/ASME Trans Mechatron. 2015;20:1753–1764.
  • Troncossi M, Foumashi MM, Carricato M, Castelli VP. Feasibility study of a hand exoskeleton for rehabilitation of post-stroke patients. Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis; 2012; Nantes, France: American Society of Mechanical Engineers. p. 137–146.
  • Troncossi M, Mozaffari Foumashi M, Mazzotti C, et al. Design and manufacturing of a hand-and-wrist exoskeleton prototype for the rehabilitation of post-stroke patients. Quaderni del DIEM–GMA. Atti della Sesta Giornata di Studio Ettore Funaioli; 2012. p. 111–120.
  • Leonardis D, Barsotti M, Loconsole C, et al. An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Trans Haptics. 2015;8:140–151.
  • Fischer M, Knubben E, Neumann R, et al. and others. Germany: Festo AG & Co. KG; 2012 [cited 2017]. Available from: https://www.festo.com/group/en/cms/10233.htm.
  • SangWook L, Landers KA, Hyung-Soon P. Development of a biomimetic hand exotendon device (BiomHED) for restoration of functional hand movement post-stroke. IEEE Trans Neural Syst Rehabil Eng. 2014;22:886–898.
  • Aubin PM, Sallum H, Walsh C, Stirling L, Correia AA. Pediatric robotic thumb exoskeleton for at-home rehabilitation: the isolated orthosis for thumb actuation (IOTA). IEEE International Conference on Rehabilitation Robotics (ICORR); 2013; Seattle, WA: IEEE. p. 1–6.
  • Lambercy O, Schröder D, Zwicker S, Gassert R. Design of a thumb exoskeleton for hand rehabilitation. Proceedings of the 7th International Convention on Rehabilitation Engineering and Assistive Technology. Gyeonggi-do, South Korea: Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre; 2013. p. 1–4.
  • Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ. Soft robotic glove for combined assistance and at-home rehabilitation. Robot Auton Syst. 2015;73:135–143.
  • Loureiro RCV, Harwin WS. Reach & grasp therapy: design and control of a 9-DOF robotic neuro-rehabilitation system. Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics (ICORR); 2007; Noordwijk, The Netherlands: IEEE. p. 757–763.
  • Rahman MA, Al-Jumaily A. Design and development of a hand exoskeleton for rehabilitation following stroke. Proc Eng. 2012;41:1028–1034.
  • Takagi M, Iwata K, Takahashi Y, et al. Development of a grip aid system using air cylinders. Proceedings of the IEEE International Conference on Robotics and Automation; 2009 May 12–17; Kobe, Japan: IEEE. p. 2312–2317.
  • Fischer HC, Triandafilou KM, Thielbar KO, et al. Use of a Portable Assistive Glove to Facilitate Rehabilitation in Stroke Survivors With Severe Hand Impairment. IEEE Trans Neural Syst Rehabil Eng. 2016;24:344–351.
  • Fischer H, Stubblefield K, Kline T, et al. Hand rehabilitation following stroke: a pilot study of assisted finger extension training in a virtual environment. Topics in Stroke Rehabilitation.2007;14:1–12.
  • Ochoa J, Dev Narasimhan YJ, Kamper DG. Development of a portable actuated orthotic glove to facilitate gross extension of the digits for therapeutic training after stroke. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6918–6921.
  • Gu GM, Chang PH. Development of a novel 1 DOF hand rehabilitation robot for activities of daily living (ADL) training of stroke patients. Proceedings of the 3rd IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB); 2010; Tokyo, Japan.
  • Foumashi MM, Troncossi M, Castelli VP. Design of a new hand exoskeleton for rehabilitation of post-stroke patients. In: Padois V, Bidaud P, Khatib O, editors. Romansy 19 – robot design, dynamics and control. CISM International Centre for Mechanical Sciences, vol 544. Vienna: Springer; 2013.p. 159–166.
  • Suarez-Escobar M, Gallego-Sanchez JA, Rendon-Velez E. Mechanisms for linkage-driven underactuated hand exoskeletons: conceptual design including anatomical and mechanical specifications. Int J Interact Des Manuf. 2017;11:55–75.
  • Favetto A, Appendino S, Battezzato A, et al. Analysis and optimization of a wire actuated, single effect nR robotic structure. Robotica. 2014;32:357–373.
  • Denavit J, Hartenberg RS. A kinematic notation for lower-pair mechanisms based on matrices. TransASME J Appl Mech. 1955;22:215–221.
  • Bullock IM, Borras J, Dollar AM. Assessing assumptions in kinematic hand models: a review. International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS; 2012 June 24–27; Rome. p. 139–146.
  • Battezzato A. Towards an underactuated finger exoskeleton: an optimization process of a two-phalange device based on kinetostatic analysis. Mech Mach Theory. 2014;78:116–130.
  • Boscheinen-Morrin J, Conolly WB. The hand: fundamentals of therapy. United Kingdom: Butterworth-Heinemann; 2001. 243 p.
  • Xun L, Kline T, Fischer HC, et al. Integration of augmented reality and assistive devices for post-stroke hand opening rehabilitation. 27th Annual International Conference of the Engineering in Medicine and Biology Society IEEE-EMBS 2005. ; Shanghai. p. 6855–6858.
  • Iqbal J, Tsagarakis NG, Caldwell DG. Human hand compatible underactuated exoskeleton robotic system. Electron Lett. 2014;50:494–496.
  • Iqbal J, Khan H, Tsagarakis NG, et al. A novel exoskeleton robotic system for hand rehabilitation – conceptualization to prototyping. Biocybernet Biomed Eng. 2014;34:79–89.
  • Ho NS, Tong KY, Hu XL, et al. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. Proceedings of the IEEE International Conference on Rehabilitation Robotics; 2011; Zurich, Switzerland: IEEE. p. 5975340.
  • Ockenfeld C, Tong RKY, Susanto EA, et al. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: Stroke rehabilitation. IEEE International Conference on Rehabilitation Robotics (ICORR); 2013 June 24–26; Seattle, WA: IEEE. p. 1–4.
  • Susanto EA, Tong RKY, Ho NSK. Hand exoskeleton robot for assessing hand and finger motor impairment after stroke. HKIE Trans. 2015;22:78–87.
  • Iqbal J, Tsagarakis NG, Caldwell DG. A multi-DOF robotic exoskeleton interface for hand motion assistance. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC; 2011 Aug 30 2011–Sept 3 2011; Boston, MA: IEEE. p. 1575–1578.
  • Iqbal J, Ahmad O, Malik A. HEXOSYS II - towards realization of light mass robotics for the hand. Proceedings of the IEEE 14th International Multitopic Conference (INMIC); 2011 Dec 22–24.Karachi, Pakistan: IEEE. p. 115–119.
  • Rahman A, Al-Jumaily A. Design and development of a bilateral therapeutic hand device for stroke rehabilitation. Int J Adv Robot Syst. 2013;1:405.1–405.12.
  • Chang P-H, Lee S-H, Gu GM, et al. The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study. Front Hum Neurosci. 2014;8:1–7.
  • Bin Ab Patar MNA, Komeda T, Mahmud J. Force assisted hand and finger device for rehabilitation. International Symposium on Technology Management and Emerging Technologies (ISTMET), 2014 May 27–29. p. 133–138.
  • Rodigari A, Zancan A, Jedrychowska I, et al. Effectiveness of the treatment of hemiplegic patient's hand with robotic rehabilitation glove “Gloreha”: preliminary results. 42nd National Congress of the Italian Society of Physical and Rehabilitative Medicine (SIMFER); 2014 September 28–October 1, 2014; Torino, Italy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.