409
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Human visual skills for brain-computer interface use: a tutorial

, , ORCID Icon, ORCID Icon &
Pages 799-809 | Received 14 Nov 2019, Accepted 08 Apr 2020, Published online: 01 Jun 2020

References

  • Huggins JE, Guger C, Ziat M, et al. Workshops of the Sixth International Brain-Computer Interface Meeting: brain-computer interfaces past, present, and future. Brain Comput Interfaces (Abingdon). 2017;4:3–36.
  • Millán JdR Rupp R, Mueller-Putz G, et al. Combining brain–computer interfaces and assistive technologies: State-of-the-Art and challenges. Front Neurosci. 2010;4:161.
  • Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002;113:767–791.
  • Abiri R, Borhani S, Sellers EW, et al. A comprehensive review of EEG-based brain–computer interface paradigms. J Neural Eng. 2019;16:011001.
  • Pandarinath C, Nuyujukian P, Blabe CH, et al. High performance communication by people with paralysis using an intracortical brain-computer interface. Elife. 2017;6:e18554.
  • Vansteensel MJ, Pels EG, Bleichner MG, et al. Fully implanted brain–computer interface in a locked-in patient with ALS. N Engl J Med. 2016;375:2060–2066.
  • Oken BS, Orhan U, Roark B, et al. Brain–computer interface with language model–electroencephalography fusion for locked-in syndrome. Neurorehabil Neural Repair. 2014;28:387–394.
  • Wolpaw JR, Bedlack RS, Reda DJ, et al. Independent home use of a brain-computer interface by people with amyotrophic lateral sclerosis. Neurology. 2018;91:e258–e267.
  • McCane LM, Sellers EW, McFarland DJ, et al. Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15:207–215.
  • Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralysed. Nature. 1999;398:297–298.
  • Moses DA, Leonard MK, Makin JG, et al. Real-time decoding of question-and-answer speech dialogue using human cortical activity. Nat Commun. 2019;10:1–14.
  • Brumberg JS, Pitt KM, Burnison JD. A noninvasive brain-computer interface for real-time speech synthesis: the importance of multimodal feedback. IEEE Trans Neural Syst Rehabil Eng. 2018;26:874–881.
  • Brumberg JS, Pitt KM, Mantie-Kozlowski A, et al. Brain–computer interfaces for augmentative and alternative communication: a tutorial. Am J Speech Lang Pathol. 2018;27:1–12.
  • Fazzi E, Signorini SG, Piana RL, et al. Neuro-ophthalmological disorders in cerebral palsy: ophthalmological, oculomotor, and visual aspects. Dev Med Child Neurol. 2012;54:730–736.
  • Graber M, Challe G, Alexandre MF, et al. Evaluation of the visual function of patients with locked-in syndrome: report of 13 cases. J Fr Ophtalmol. 2016;39:437–440.
  • Moss HE, McCluskey L, Elman L, et al. Cross-sectional evaluation of clinical neuro-ophthalmic abnormalities in an amyotrophic lateral sclerosis population. J Neurol Sci. 2012;314:97–101.
  • Thompson MC. Critiquing the Concept of BCI Illiteracy. Sci Eng Ethics. 2019 ;25:1217–1233.
  • Brumberg JS, Nguyen A, Pitt KM, et al. Examining sensory ability, feature matching and assessment-based adaptation for a brain–computer interface using the steady-state visually evoked potential. Disabil Rehabil Assist Technol. 2019;14:241–249.
  • Cecotti H. Spelling with non-invasive Brain-Computer Interfaces–current and future trends. J Physiol Paris. 2011;105:106–114.
  • Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70:510–523.
  • Acqualagna L, Treder MS, Schreuder M, et al. A novel brain-computer interface based on the rapid serial visual presentation paradigm. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2686–2689.
  • Lin Z, Zhang C, Zeng Y, et al. A novel P300 BCI speller based on the Triple RSVP paradigm. Sci Rep. 2018;8:3350.
  • Orhan U, Hild KE, Erdogmus D, et al. RSVP keyboard: an EEG based typing interface. Proc IEEE Int Conf Acoust Speech Signal Process. 2012.
  • Lees S, Dayan N, Cecotti H, et al. A review of rapid serial visual presentation-based brain–computer interfaces. J Neural Eng. 2018;15:021001.
  • Blankertz B, Krauledat M, Dornhege G, et al. A note on brain actuated spelling with the Berlin brain-computer interface. In: Stephanidis C, editor. International Conference on Universal Access in Human-Computer Interaction. Berlin: Springer; 2007.
  • Chen C, Yang J, Xia B. A cursor control based Chinese-English brain-computer interface speller. Trans Jpn Soc Med Biol Eng. 2013;51:R-132.
  • Nagel S, Rosenstiel W. Spüler editor. Random visual evoked potentials (RVEP) for brain-computer interface (BCI) control. Proceedings of the 7th Brain-Computer Interface Conference; Graz. 2017.
  • Blankertz B, Dornhege G, Krauledat M, et al. The Berlin Brain-Computer Interface presents the novel mental typewriter Hex-o-Spell. Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course. 2006.
  • Kaufmann T, Holz EM, Kubler A. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front Neurosci. 2013 2013;7:129.
  • Sellers EW, Krusienski DJ, McFarland DJ, et al. A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol Psychol. 2006 ;73:242–252.
  • Takano K, Komatsu T, Hata N, et al. Visual stimuli for the P300 brain-computer interface: a comparison of white/gray and green/blue flicker matrices. Clin Neurophysiol. 2009;120:1562–1566.
  • Townsend G, LaPallo B, Boulay C, et al. A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol. 2010 ;121:1109–1120.
  • Guger C, Ortner R, Dimov S, et al. A comparison of face speller approaches for P300 BCIs. IEEE International Conference on Systems, Man, and Cybernetics; 2016 Oct 9–12; Budapest, Hungary. 2016.
  • Peters B, Higger M, Quivira F, et al. Effects of simulated visual acuity and ocular motility impairments on SSVEP brain-computer interface performance: an experiment with Shuffle Speller. Brain Computer Interfaces. 2018;5:58–72. 2018
  • Ahani A, Moghadamfalahi M, Erdogmus D. Language-model assisted and icon-based communication through a brain computer interface with different presentation paradigms. IEEE Trans Neural Syst Rehabil Eng. 2018.
  • Liang Y, Wang W, Qu J, et al. Comparison study of visual search on 6 different types of icons. J Phys Conf Ser. 2018;1060:012031.
  • Brunner P, Joshi S, Briskin S, et al. Does the ‘P300’speller depend on eye gaze? J Neural Eng. 2010;7:056013.
  • Liu Y, Zhou Z, Hu D. Gaze independent brain-computer speller with covert visual search tasks. Clin Neurophysiol. 2011;122:1127–1136.
  • Wolpaw JRWEW. Brain-computer interfaces: something new under the sun. In: Wolpaw JRWEW, editor. Brain-computer interfaces: principles and practice. Oxford, NY: Oxford University Press; 2012.
  • Monge-Pereira E, Ibanez-Pereda J, Alguacil-Diego IM, et al. Use of electroencephalography brain-computer interface systems as a rehabilitative approach for upper limb function after a stroke: a systematic review. PM R. 2017;9:918–932.
  • Daly I, Billinger M, Laparra-Hernandez J, et al. On the control of brain-computer interfaces by users with cerebral palsy. Clin Neurophysiol. 2013 ;124:1787–1797.
  • Lule D, Noirhomme Q, Kleih SC, et al. Probing command following in patients with disorders of consciousness using a brain-computer interface. Clin Neurophysiol. 2013 ;124:101–106.
  • Xie Q, Pan J, Chen Y, et al. A gaze-independent audiovisual brain-computer Interface for detecting awareness of patients with disorders of consciousness. BMC Neurol. 2018;18:144.
  • Orlandi MAR The optometrist. In: Federici S, Scherer M, editor. Assistive technology assessment handbook. Boca Raton (FL): CRC Press; 2012. p. 201–228.
  • Cassin B, Solomon S, Rubin ML. Dictionary of eye terminology. Vol. 10. Gainsville: Triad Publishing; 1984.
  • Vitale S, Cotch MF, Sperduto RD. Prevalence of visual impairment in the United States. JAMA. 2006;295:2158–2163.
  • Organization WH. International statistical classification of diseases and related health problems. 10th revision. 2015 [updated 2016]. Available from: https://apps.who.int/iris/handle/10665/246208
  • Scheiman M. Understanding and managing vision deficits: a guide for occupational therapists. Thorofare (NJ): SLACK; 2011.
  • Congdon N, Vingerling JR, Klein BE, et al. Prevalence of cataract and pseudophakia/aphakia among adults in the United States. Arch Ophthalmol. 2004 2004/;122:487–494.
  • Guzzetta A, Mercuri E, Cioni G. Visual disorders in children with brain lesions: 2. Visual impairment associated with cerebral palsy. Eur J Paediatr Neurol. 2001;5:115–119.
  • Kozeis N, Anogeianaki A, Mitova DT, et al. Visual function and visual perception in cerebral palsied children. Oph Phys Optics. 2007 2007;27:44–53.
  • Rapp JC, Torres MM. The adult with cerebral palsy. Arch Fam Med. 2000;9:466–472.
  • Rahmani B, Tielsch JM, Katz J, et al. The cause-specific prevalence of visual impairment in an urban population: the Baltimore Eye Survey. Ophthalmology. 1996;103:1721–1726.
  • Warren M. A hierarchical model for evaluation and treatment of visual perceptual dysfunction in adult acquired brain injury, Part 1. Am J Occup Ther. 1993;47:42–54.
  • Ohki M, Kanayama R, Nakamura T, et al. Ocular abnormalities in amyotrophic lateral sclerosis. Acta Otolaryngol. 1994;114:138–142.
  • Chen SHK, O'Leary M. Eye Gaze 101: what speech-language pathologists should know about selecting eye gaze augmentative and alternative communication systems. Perspect ASHA Sigs. 2018;3:24–32.
  • Finsterer J. Ptosis: causes, presentation, and management. Aesthetic Plast Surg. 2003;27:193–204.
  • Rutner D, Kapoor N, Ciuffreda KJ, et al. Occurrence of ocular disease in traumatic brain injury in a selected sample: a retrospective analysis. Brain Inj. 2006;20:1079–1086.
  • Dufresne D, Dagenais L, Shevell MI. Spectrum of Visual Disorders in a Population-Based Cerebral Palsy Cohort. Pediatr Neurol. 2014;50:324–328.
  • Park MJ, Yoo YJ, Chung CY, et al. Ocular findings in patients with spastic type cerebral palsy. BMC Ophthalmol. 2016;16:195.
  • Klein R, Chou CF, Klein BEK, et al. Prevalence of age-related macular degeneration in the US population. Arch Ophthalmol. 2011;129:75–80.
  • Zhang X, Saaddine JB, Chou CF, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA. 2010;304:649–656.
  • Keltner JL, Johnson CA, Spurr JO, et al. Baseline visual field profile of optic neuritis: the experience of the optic neuritis treatment trial. Arch Ophthalmol. 1993;111:231–234.
  • Lee JP, Park IW, Chung YS. The volume of tumor mass and visual field defect in patients with pituitary macroadenoma. Korean J Ophthalmol. 2011;25:37–41.
  • Atkins EJ, Newman NJ, Biousse V. Post-traumatic visual loss. Rev Neurol Dis. 2008;5:73–81.
  • Birch J. Worldwide prevalence of red-green color deficiency. J Opt Soc Am A Opt Image Sci Vis. 2012;29:313–320.
  • Boven L, Jiang QL, Moss HE. Diffuse colour discrimination as marker of afferent visual system dysfunction in amyotrophic lateral sclerosis. Neuroophthalmology. 2017;41:310–314.
  • Costa M, Pereira J. Correlations between color perception and motor function impairment in children with spastic cerebral palsy. Behav Brain Funct. 2014;10:22.
  • Bouska MJ, Kauffman NA, Marcus SE. Disorders of the visual perceptual system. In: Umphred DA, editor. Neurological rehabilitation. 2nd ed. St Louis: CV Mosby; 1990.
  • Ego A, Lidzba K, Brovedani P, et al. Visual-perceptual impairment in children with cerebral palsy: a systematic review. Developmental Medicine and Child Neurology. Dev Med Child Neurol. 2015;57:46–51.
  • Mathers M, Keyes M, Wright M. A review of the evidence on the effectiveness of children’s vision screening. Child Care Health Dev. 2010;36:756–780.
  • Richman JE, Petito GT, Cron MT. Broken wheel acuity test: a new and valid test for preschool and exceptional children. J Am Optom Assoc. 1984;55:561–565.
  • Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. 2004;85:2020–2029.
  • Ficklin IT, Maples WC, Atchley J. Northeastern State University College of Optometry’s Oculomotor Norms. J Behav Optom. 1992;3:143–150.
  • Anderson AJ, Shuey NH, Wall M. Rapid confrontation screening for peripheral visual field defects and extinction. Clin Exp Optom. 2009;92:45–48.
  • Peters B, Kinsella M, Eddy B, et al. A revised sensory/cognitive/communication screen for use with communication BCI study participants. Proceedings of the 7th International BCI Meeting Abstract Book; Pacific Grove, CA. 2018.
  • Higger M, Quivira F, Akcakaya M, et al. Recursive bayesian coding for BCIs. IEEE Trans Neural Syst Rehabil Eng. 2017;25:704–799.
  • Quivira F, Higger M, Erdogmus D. Shuffle Speller: user-adaptive spelling. Proceedings of the Rehabilitation Engineering and Assistive Technology Society of North America Conference; 2017.
  • Johnson J. Designing with the mind in mind: simple guide to understanding user interface design guidelines. Elsevier; 2013.
  • Pitt K, Brumberg J. A screening protocol incorporating brain-computer interface feature matching considerations for augmentative and alternative communication. Assistive Technol. 2018.
  • eTools – computer workstations. Occupational Safety and Health Administration; 2019. Available from: https://www.osha.gov/SLTC/etools/computerworkstations/
  • MacDonald LW. Tutorial: using color effectively in computer. IEEE Comput Grap Appl. 1999;19:20–35.
  • Wang AH, Chen MT. Effects of polarity and luminance contrast on visual performance and VDT display quality. Int J Ind Ergon. 2000;25:415–421.
  • Allan J, Kirkpatrick A, Henry SL. Accessibility requirements for people with low vision. 2016.
  • Li Y, Bahn S, Nam CS, et al. Effects of luminosity contrast and stimulus duration on user performance and preference in a P300-based Brain–Computer Interface. Int J Human Comput Interact. 2014;30:151–163.
  • Jefferson L, Harvey R. Accommodating color blind computer users. Assets '06: Proceedings of the 8th international ACM SIGACCESS conference on Computers and accessibility. 2006. New York, NY: ACM.
  • Chisholm W, Vanderheiden G, Jacobs I. W3C Web Content and Accessibility Guidelines 1.0. 1999.
  • Granquist C, Wu YH, Gage R, et al. How people with low vision achieve magnification in digital reading. Optom Vis Sci. 2018;95:711–719.
  • Ron-Angevin R, Garcia L, Fernández-Rodríguez Á, et al. Impact of speller size on a visual P300 Brain-Computer Interface (BCI) system under two conditions of constraint for eye movement. Comput Intell Neurosci. 2019;2019: 7876248.
  • Warren M. Pilot study on activities of daily living limitations in adults with hemianopsia. Am J Occup Ther. 2009;63:626–633.
  • Fager SK, Fried-Oken M, Jakobs T, et al. New and emerging access technologies for adults with complex communication needs and severe motor impairments: state of the science. Augment Altern Commun. 2019;35:13–25.
  • Wilkinson KM, Jagaroo V. Contributions of principles of visual cognitive science to AAC system display design. Augment Altern Commun. 2004;20:123–136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.