575
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Motor learning in hemi-Parkinson using VR-manipulated sensory feedback

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 349-361 | Received 17 Feb 2020, Accepted 17 Jun 2020, Published online: 11 Jul 2020

References

  • Buchman AS, Goetz CG, Klawans HL. Hemiparkinsonism with hemiatrophy. Neurology. 1988;38(4):527.
  • Giladi N, Burke RE, Kostic V, et al Hemiparkinsonism-hemiatrophy syndrome: clinical and neuroradiologic features. Neurology. 1990;40(11):1731.
  • Fugl-Meyer AR, Jääskö L, Leyman I, et al. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1974;7:13–31.
  • Hsu A-L, Tang P-F, Jan M-H. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil. 2003;84(8):1185–1193.
  • Badke MB, Duncan PW. Patterns of rapid motor responses during postural adjustments when standing in healthy subjects and hemiplegic patients. Phys Ther. 1983;63(1):13–20.
  • Sabari JS. Motor learning concepts applied to activity-based intervention with adults with hemiplegia. Am J Occup Ther. 1991;45(6):523–530.
  • Bobath B. Adult hemiplegia: evaluation and treatment. 3rd ed. Oxford (England): Butterworth-Heinemann; 1990.
  • Cifu DX, Stewart DG. Factors affecting functional outcome after stroke: a critical review of rehabilitation interventions. Arch Phys Med Rehabil. 1999;80(5 Suppl. 1):S35–S39.
  • Ernst E. A review of stroke rehabilitation and physiotherapy. Stroke. 1990;21(7):1081–1085.
  • Teasell RW, Foley NC, Bhogal SK, et al. An evidence-based review of stroke rehabilitation. Top Stroke Rehabil. 2003;10(1):1–7.
  • Grotta JC, Noser EA, Ro T, et al. Constraint-induced movement therapy. Stroke. 2004;35(11 Suppl. 1):2699–2701.
  • Taub E, Uswatte G, Pidikiti R. Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation – a clinical review. J Rehabil Res Dev. 1999;36(3):237–251.
  • Wolf SL, Winstein CJ, Miller JP, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–2104.
  • Hoare BJ, Wasiak J, Imms C, et al. Constraint-induced movement therapy in the treatment of the upper limb in children with hemiplegic cerebral palsy:a Cochrane systematic review. Clin Rehabil. 2007;21(8):675-685.
  • Mattar AA, Gribble PL. Motor learning by observing. Neuron. 2005;46(1):153–160.
  • Ossmy O, Mukamel R. Activity in superior parietal cortex during training by observation predicts asymmetric learning levels across hands. Sci Rep. 2016;6:32133.
  • Rizzolatti G, Fogassi L, Gallese V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci. 2001;2(9):661–670.
  • Mukamel R, Ekstrom AD, Kaplan J, et al. Single-neuron responses in humans during execution and observation of actions. Curr Biol. 2010;20(8):750–756.
  • Rizzolatti G, Fabbri-Destro M, Cattaneo L. Mirror neurons and their clinical relevance. Nat Clin Pract Neurol. 2009;5(1):24–34.
  • Ramachandran VS, Altschuler EL. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain. 2009;132(Pt 7):1693–1710.
  • Wong JD, Kistemaker DA, Chin A, et al. Can proprioceptive training improve motor learning? J Neurophysiol. 2012;108(12):3313–3321.
  • Lotze M, Braun C, Birbaumer N, et al. Motor learning elicited by voluntary drive. Brain. 2003;126(Pt 4):866–872.
  • Ossmy O, Mukamel R. Neural network underlying intermanual skill transfer in humans. Cell Rep. 2016;17(11):2891–2900.
  • Darainy M, Vahdat S, Ostry DJ. Perceptual learning in sensorimotor adaptation. J Neurophysiol. 2013;110(9):2152–2162.
  • Vahdat S, Darainy M, Ostry DJ. Structure of plasticity in human sensory and motor networks due to perceptual learning. J Neurosci. 2014;34(7):2451–2463.
  • Hesse S, Schulte-Tigges G, Konrad M, et al. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003;84(6):915–920.
  • Lindberg P, Schmitz C, Forssberg H, et al. Effects of passive-active movement training on upper limb motor function and cortical activation in chronic patients with stroke: a pilot study. J Rehabil Med. 2004;36(3):117–123.
  • Volpe BT, Krebs HI, Hogan N. Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? Curr Opin Neurol. 2001;14(6):745–752.
  • Picelli A, Tamburin S, Passuello M, et al. Robot-assisted arm training in patients with Parkinson’s disease: a pilot study. J Neuroeng Rehabil. 2014;11(1):28.
  • Scripture E, Smith TL, Brown EM. On the education of muscular control and power. Stud Yale Psychol Lab. 1894;2:114–119.
  • Sainburg RL, Wang J. Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res. 2002;145(4):437–447.
  • Anguera JA, Russell CA, Noll DC, et al. Neural correlates associated with intermanual transfer of sensorimotor adaptation. Brain Res. 2007;1185:136–151.
  • Hendy AM, Spittle M, Kidgell DJ. Cross education and immobilisation: mechanisms and implications for injury rehabilitation. J Sci Med Sport. 2012;15(2):94–101.
  • Farthing JP. Cross-education of strength depends on limb dominance: implications for theory and application. Exerc Sport Sci Rev. 2009;37(4):179–187.
  • Raghavan P, Krakauer JW, Gordon AM. Impaired anticipatory control of fingertip forces in patients with a pure motor or sensorimotor lacunar syndrome. Brain. 2006;129(Pt 6):1415–1425.
  • Urbin M, Harris-Love ML, Carter AR, et al. High-intensity, unilateral resistance training of a non-paretic muscle group increases active range of motion in a severely paretic upper extremity muscle group after stroke. Front Neurol. 2015;6:119.
  • Ruddy KL, Carson RG. Neural pathways mediating cross education of motor function. Front Hum Neurosci. 2013;7:397.
  • Howatson G, Zult T, Farthing JP, et al. Mirror training to augment cross-education during resistance training: a hypothesis. Front Hum Neurosci. 2013;7:396.
  • Jebsen RH, Taylor N, Trieschmann R, et al. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969;50(6):311–319.
  • Mathiowetz V, Volland G, Kashman N, et al. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39(6):386–391.
  • Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23:S208–S219.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc B Met. 1995;57(1):289–300.
  • Grillner S, Hellgren J, Menard A, et al Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci. 2005;28(7):364–370.
  • Wing AM, Haggard P, Flanagan JR. Hand and brain: the neurophysiology and psychology of hand movements. San Diego: Academic Press; 1996.
  • Bard G, Hirschberg G. Recovery of voluntary motion in upper extremity following hemiplegia. Arch Phys Med Rehabil. 1965;46:567–572.
  • Skilbeck CE, Wade DT, Hewer RL, et al. Recovery after stroke. J Neurol Neurosurg Psychiatry. 1983;46(1):5–8.
  • Rosén B, Lundborg G. Training with a mirror in rehabilitation of the hand. Scand J Plast Reconstr Surg Hand Surg. 2005;39(2):104–108.
  • Bagce HF, Saleh S, Adamovich SV, et al. Visuomotor discordance in virtual reality: effects on online motor control. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011; Boston, MA. p. 7262–7265.
  • Sathian K, Greenspan AI, Wolf SL. Doing it with mirrors: a case study of a novel approach to neurorehabilitation. Neurorehabil Neural Repair. 2000;14(1):73–76.
  • Selles RW, Schreuders TA, Stam HJ. Mirror therapy in patients with causalgia (complex regional pain syndrome type II) following peripheral nerve injury: two cases. J Rehabil Med. 2008;40(4):312–314.
  • Bartur G, Pratt H, Dickstein R, et al. Electrophysiological manifestations of mirror visual feedback during manual movement. Brain Res. 2015;1606:113–124.
  • Ossmy O, Mukamel R. Short term motor-skill acquisition improves with size of self-controlled virtual hands. PLoS One. 2017;12(1):e0168520.
  • Weghorst S. Augmented reality and Parkinson's disease. Commun ACM. 1997;40(8):47–48.
  • Broeren J, Rydmark M, Sunnerhagen KS. Virtual reality and haptics as a training device for movement rehabilitation after stroke: a single-case study. Arch Phys Med Rehabil. 2004;85(8):1247–1250.
  • Merians AS, Jack D, Boian R, et al. Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther. 2002;82(9):898–915.
  • Viau A, Feldman AG, McFadyen BJ, et al. Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J NeuroEng Rehabil. 2004;1(1):11.
  • You SH, Jang SH, Kim Y-H, et al. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke. 2005;36(6):1166–1171.
  • Foreman N, Wilson P, Stanton D. VR and spatial awareness in disabled children. Commun ACM. 1997;40(8):76–77.
  • Holden M, Todorov E, Callahan J, et al. Virtual environment training improves motor performance in two patients with stroke: case report. J Neurol Phys Ther. 1999;23(2):57–67.
  • Robles-García V, Corral-Bergantiños Y, Espinosa N, et al. Effects of movement imitation training in Parkinson's disease: a virtual reality pilot study. Parkinsonism Relat Disord. 2016;26:17–23.
  • Ossmy O, Mukamel R. Using virtual reality to transfer motor skill knowledge from one hand to another. JoVE. 2017;127(127):e55965.
  • Yang Q, Banovic N, Zimmerman J. Mapping machine learning advances from HCI research to reveal starting places for design innovation. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. New York (NY): ACM; 2018. p. 1–11.
  • Freeman J, Cody F, Schady W. The influence of external timing cues upon the rhythm of voluntary movements in Parkinson's disease. J Neurol Neurosurg Psychiatry. 1993;56(10):1078–1084.
  • Howe TE, Lövgreen B, Cody F, et al. Auditory cues can modify the gait of persons with early-stage Parkinson's disease: a method for enhancing Parkinsonian walking performance. Clin Rehabil. 2003;17(4):363–367.
  • Jiang Y, Norman KE. Effects of visual and auditory cues on gait initiation in people with Parkinson's disease. Clin Rehabil. 2006;20(1):36–45.
  • Martin JP. The basal ganglia and posture. London: Pitman Medical; 1967.
  • McIntosh GC, Brown SH, Rice RR, et al. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 1997;62(1):22–26.
  • Morris ME, Iansek R, Matyas TA, et al. Ability to modulate walking cadence remains intact in Parkinson's disease. J Neurol Neurosurg Psychiatry. 1994;57(12):1532–1534.
  • Thaut MH, McIntosh GC, Rice RR, et al. Rhythmic auditory stimulation in gait training for Parkinson's disease patients. Mov Disord. 1996;11(2):193–200.
  • Frenkel-Toledo S, Bentin S, Perry A, et al. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements. Brain Res. 2013;1509:43–57.
  • Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci. 1992;15(1):20–25.
  • Lee J-H, van Donkelaar P. Dorsal and ventral visual stream contributions to perception-action interactions during pointing. Exp Brain Res. 2002;143(4):440–446.
  • Ridderinkhof KR, Van Den Wildenberg WP, Segalowitz SJ, et al. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 2004;56(2):129–140.
  • Rowe JB, Toni I, Josephs O, et al. The prefrontal cortex: response selection or maintenance within working memory? Science. 2000;288(5471):1656–1660.
  • Hadland K, Rushworth M, Passingham R, et al. Interference with performance of a response selection task that has no working memory component: an rTMS comparison of the dorsolateral prefrontal and medial frontal cortex. J Cogn Neurosci. 2001;13(8):1097–1108.
  • Wu T, Long X, Wang L, et al. Functional connectivity of cortical motor areas in the resting state in Parkinson's disease. Hum Brain Mapp. 2011;32(9):1443–1457.
  • Baudrexel S, Witte T, Seifried C, et al Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson's disease. NeuroImage. 2011;55(4):1728–1738.
  • Hacker C, Perlmutter J, Criswell S, et al. Resting state functional connectivity of the striatum in Parkinson’s disease. Brain. 2012;135(12):3699–3711.
  • Helmich RC, Derikx LC, Bakker M, et al. Spatial remapping of cortico-striatal connectivity in Parkinson's disease. Cereb Cortex. 2010;20(5):1175–1186.
  • Kwak Y, Peltier S, Bohnen NI, et al. Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson's disease. Front Syst Neurosci. 2010;4:143.
  • Luo C, Song W, Chen Q, et al. Reduced functional connectivity in early-stage drug-naive Parkinson's disease: a resting-state fMRI study. Neurobiol Aging. 2014;35(2):431–441.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.