1,948
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Recommendations for studies on dynamic arm support devices in people with neuromuscular disorders: a scoping review with expert-based discussion

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 487-500 | Received 27 Apr 2020, Accepted 04 Aug 2020, Published online: 26 Sep 2020

References

  • Deenen JC, van Doorn PA, Faber CG, et al. The epidemiology of neuromuscular disorders: age at onset and gender in the Netherlands. Neuromuscul Disord. 2016;26(7):447–452.
  • Deenen JC, Horlings CG, Verschuuren JJ, et al. The epidemiology of neuromuscular disorders: a comprehensive overview of the literature. J Neuromuscul Dis. 2015;2(1):73–85.
  • Bergsma A, Cup EH, Janssen MMHP, et al. Upper limb function and activity in people with facioscapulohumeral muscular dystrophy: a web-based survey. Disabil Rehabil. 2017;39(3):236–243.
  • van der Heide L, Gelderblom G, de Witte L. Effects and effectiveness of dynamic arm supports. Am J Phys Med Rehabil. 2015;3:256.
  • van der Heide L, van Ninhuijs B, Bergsma A, et al. An overview and categorization of dynamic arm supports for people with decreased arm function. Prosthet Orthot Int. 2014;38(4):287–302.
  • Coscia M, Cheung VCK, Tropea P, et al. The effect of arm weight support on upper limb muscle synergies during reaching movements. J NeuroEngineering Rehabil. 2014;11(1):22.
  • Ellis MD, Sukal T, DeMott T, et al. Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading. Neurorehabil Neural Repair. 2008;22(4):321–329.
  • Prange GB, Jannink MJA, Stienen AHA, et al. Influence of gravity compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients. Neurorehabil Neural Repair. 2009;23(5):478–485.
  • Janssen MMHP, Bergsma A, Geurts ACH, et al. Patterns of decline in upper limb function of boys and men with DMD: an international survey. J Neurol. 2014;261(7):1289–1290.
  • Bergsma A, Janssen MMHP, Geurts ACH, et al. Different profiles of upper limb function in four types of neuromuscular disorders. Neuromuscul Disord. 2017;27(12):1115–1122.
  • van der Heide L, de Witte L. The perceived functional benefit of dynamic arm supports in daily life. J Rehabil Res Dev. 2016;53(6):1139–1150.
  • Rahman T, Sample W, Seliktar R, et al. Design and testing of a functional arm orthosis in patients with neuromuscular diseases. IEEE Trans Neural Syst Rehabil Eng. 2007;15:244–251.
  • Shank TM, Wee J, Ty J, et al. Quantitative measures with WREX usage. IEEE Int Conf Rehabil Robot. 2017;2017:1375–1380.
  • Janssen MMHP, Lobo-Prat J, Bergsma A, et al. 2nd Workshop on upper-extremity assistive technology for people with duchenne: effectiveness and usability of arm supports. Neuromuscular Disorders: NMD. 2019;29(8):651–656.
  • World Health Organization. 2001. International classification of functioning, disability and health: ICF. Geneva: World Health Organization. Available from: https://apps.who.int/iris/handle/10665/42407
  • Jutai JW, Fuhrer MJ, Demers L, et al. Toward a taxonomy of assistive technology device outcomes. Am J Phys Med Rehabil. 2005;84:294–302.
  • Holsbeeke L, Ketelaar M, Schoemaker MM, et al. Capacity, capability, and performance: different constructs or three of a kind? Arch Phys Med Rehabil. 2009;90(5):849–855.
  • Dunning AG, Janssen MMHP, Kooren PN, et al. Evaluation of an arm support with trunk motion capability. J Med Device. 2016;10:1–4.
  • Kooren PN, Dunning AG, Janssen MMHP, et al. Design and pilot validation of A-gear: a novel wearable dynamic arm support. J NeuroEngineering Rehabil. 2015;12(1).DOI:https://doi.org/10.1186/s12984-015-0072-y
  • Essers J, Meijer K, Murgia A, et al. An inverse dynamic analysis on the influence of upper limb gravity compensation during reaching. Int Conf Rehabil Robot. 2013;2013:6650368.
  • Estilow T, Glanzman AM, Powers K, et al. Use of the Wilmington robotic exoskeleton to improve upper extremity function in patients with Duchenne muscular dystrophy. Am J Occup Ther. 2018;72(2):7202345010p1.
  • van der Heide L, Ramakers I, Essers JMN, et al. Is it possible to assess the effects of dynamic arm supports on upper extremity range of motion during activities of daily living in the domestic setting using a portable motion capturing device? – A pilot study. TAD. 2017;29(1–2):91–99.
  • Haumont T, Rahman T, Sample W, et al. Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease. J Pediatr Orthop. 2011;31:1–5.
  • Lebrasseur A, Lettre J, Routhier F, et al. Evaluation of the usability of an actively actuated arm support. Assist Technol. 2019;1–7.DOI:https://doi.org/10.1080/10400435.2019.1629124
  • Cruz A, Callaway L, Randall M, et al. Mobile arm supports in Duchenne muscular dystrophy: a pilot study of user experience and outcomes. Disabil Rehabil-Assist Technol. 2020.DOI:https://doi.org/10.1080/17483107.2020.1749892
  • Bendixen RM. Use of dynamic arm support devices for upper limb function in non-ambulatory men with Duchenne Muscular Dystrophy (DMD) ClinicalTrials.gov2019. Available from: https://clinicaltrials.gov/ct2/show/study/NCT03531788
  • Pedrocchi A. USEFUL: User-centred assistive SystEm for arm Functions in neUromuscuLar Subjects ClinicalTrials.gov2019. Available from: https://clinicaltrials.gov/ct2/show/NCT03127241.
  • Flextension [July 2020]. Available from: https://flextension.nl.
  • Armon Products [July 2020]. Available from: https://armonproducts.com.
  • Focal Meditech B.V. [July 2020]. Available from: https://focalmeditech.nl.
  • JAECO Orthopedic [July 2020]. Available from: https://jaecoorthopedic.com.
  • Heutinck L, Jansen M, van den Elzen Y, et al. Virtual reality computer gaming with dynamic arm support in boys with Duchenne muscular dystrophy. J Neuromuscul Dis. 2018;5(3):359–372.
  • Jansen M, Burgers J, Jannink M, et al. Upper limb training with dynamic arm support in boys with Duchenne muscular dystrophy: a feasibility study. Int J Phys Med Rehabil. 2015;3:256–264.
  • Gandolla M, Antonietti A, Longatelli V, et al. The effectiveness of wearable upper limb assistive devices in degenerative neuromuscular diseases: a systematic review and meta-analysis. Front Bioeng Biotechnol. 2020;7:1–16.DOI:https://doi.org/10.3389/fbioe.2019.00450
  • van der Geest A, Essers JMN, Bergsma A, et al. Monitoring daily physical activity of upper extremity in young and adolescent boys with Duchenne muscular dystrophy: a pilot study. Muscle and Nerve. 2019;61(3):293–300.
  • Essers JMN, Peters AA, Meijer K, et al. Superficial shoulder muscle synergy analysis in facioscapulohumeral Dystrophy during humeral elevation tasks. IEEE Trans Neural Syst Rehabil Eng. 2019;27:1556–1565.
  • Bergsma A, Murgia A, Cup EH, et al. Upper extremity kinematics and muscle activation patterns in subjects with facioscapulohumeral dystrophy. Arch Phys Med Rehabil. 2014;95(9):1731–1741.
  • de Baets L, Jaspers E, Janssens L, et al. Characteristics of neuromuscular control of the scapula after stroke a first exploration. Front Hum Neurosci. 2014;8:933.
  • Trigili E, Grazi L, Crea S, et al. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks. J NeuroEngineering Rehabil. 2019;16(1):1–16.DOI:https://doi.org/10.1186/s12984-019-0512-1
  • Koene S, Dirks I, van Mierlo E, et al. Domains of daily physical activity in children with mitochondrial disease: a 3D accelerometry approach. JIMD Rep. 2016;6:7–17.
  • Janssen MMHP, Harlaar J, Koopman B, et al. Unraveling upper extremity performance in Duchenne muscular dystrophy: a biophysical model. Neuromuscul Disord. 2019;29(5):368–375.
  • Han JJ, De Bie E, Nicorici A, et al. Reachable workspace reflects dynamometer-measured upper extremity strength in facioscapulohumeral muscular dystrophy. Muscle Nerve. 2015;52(6):948–955.