241
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Neural decoding of continuous upper limb movements: a meta-analysis

, &
Pages 731-737 | Received 01 Aug 2020, Accepted 23 Oct 2020, Published online: 13 Nov 2020

References

  • Abiri R, Borhani S, Sellers EW, et al. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng. 2019;16:011001.
  • Robinson N, Vinod A. Noninvasive brain-computer interface: decoding arm movement kinematics and motor control. IEEE Syst. Man Cybern. Mag. 2016;2:4–16.
  • Tam WK, Wu T, Zhao Q, et al. Human motor decoding from neural signals: a review. BMC Biomed Eng. 2019;1:22.
  • Pfurtscheller G, Müller-Putz GR, Pfurtscheller J, et al. EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient. EURASIP J Adv Signal Process. 2005;2005:628453.
  • Marquez-Chin C, Marquis A, Popovic MR. EEG-triggered functional electrical stimulation therapy for restoring upper limb function in chronic stroke with severe hemiplegia. Case Rep Neurol Med. 2016;2016:1–11.
  • Qiu S, Yi W, Xu J, et al. Event-related beta EEG changes during active, passive movement and functional electrical stimulation of the lower limb. IEEE Trans Neural Syst Rehabil Eng. 2016;24:283–290.
  • Gant K, Guerra S, Zimmerman L, et al. EEG-controlled functional electrical stimulation for hand opening and closing in chronic complete cervical spinal cord injury. Biomed Phys Eng Express. 2018;4:065005.
  • Jovanovic LI, Kapadia N, Lo L, et al. Restoration of upper limb function after chronic severe hemiplegia: a case report on the feasibility of a brain-computer interface-triggered functional electrical stimulation therapy. Am J Phys Med Rehabil. 2020;99:e35–e40.
  • Selfslagh A, Shokur S, Campos DS, et al. Non-invasive, brain-controlled functional electrical stimulation for locomotion rehabilitation in individuals with paraplegia. Sci Rep. 2019;9:1–17.
  • Choi I, Kim NY, Nam CS. A sensorimotor rhythm-based brain–computer interface controlled functional electrical stimulation for handgrasp rehabilitation. In: Nam C, editor. Neuroergonomics. Cham (Switzerland): Springer; 2020. p. 329–349.
  • Raspopovic S, Cimolato A, Panarese A, et al. Neural signal recording and processing in somatic neuroprosthetic applications. A review. J Neurosci Methods. 2020;337:108653.
  • Vidaurre C, Klauer C, Schauer T, et al. EEG-based BCI for the linear control of an upper-limb neuroprosthesis. Med Eng Phys. 2016;38:1195–1204.
  • Müller-Putz GR, Scherer R, Pfurtscheller G, et al. EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci Lett. 2005;382:169–174.
  • Bhagat NA, Venkatakrishnan A, Abibullaev B, et al. Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors. Front. Neurosci. 2016;10:122.
  • Qiu S, Li Z, He W, et al. Brain–machine interface and visual compressive sensing-based teleoperation control of an exoskeleton robot. IEEE Trans Fuzzy Syst. 2017;25:58–69.
  • Gordleeva SY, Lobov SA, Grigorev NA, et al. Real-time EEG–EMG human–machine interface-based control system for a lower-limb exoskeleton. IEEE Access. 2020;8:84070–84081.
  • Vinoj P, Jacob S, Menon VG, et al. Brain-controlled adaptive lower limb exoskeleton for rehabilitation of post-stroke paralyzed. IEEE Access. 2019;7:132628–132648.
  • Jeong JH, Shim KH, Kim DJ, et al. Brain-controlled robotic arm system based on multi-directional CNN-BiLSTM network using EEG signals. IEEE Trans Neural Syst Rehabil Eng. 2020;28:1226–1238.
  • Gandolfi M, Formaggio E, Geroin C, et al. Quantification of upper limb motor recovery and EEG power changes after robot-assisted bilateral arm training in chronic stroke patients: a prospective pilot study. Neural Plast. 2018;2018:1–15.
  • Kumar N, Michmizos KP. Machine learning for motor learning: EEG-based continuous assessment of cognitive engagement for adaptive rehabilitation robots. arXiv Preprint arXiv:2002.07541. 2020.
  • Müller O, Rotter S. Neurotechnology: current developments and ethical issues. Front Syst Neurosci. 2017;11:93.
  • Wagner FB, Mignardot JB, Le Goff-Mignardot CG, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–71.
  • Handiru VS, Vinod A, Guan C. EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement. J Neural Eng. 2017;14:046008.
  • Bae GY, Luck SJ. Decoding motion direction using the topography of sustained ERPs and alpha oscillations. Neuroimage. 2019;184:242–255.
  • Kim HH, Jeong J. Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts. Comput Biol Med. 2019;110:254–264.
  • Tang X, Wang T, Du Y, et al. Motor imagery EEG recognition with KNN-based smooth auto-encoder. Artif Intell Med. 2019;101:101747.
  • Herman P, Prasad G, McGinnity TM, et al. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng. 2008;16:317–326.
  • Hsu WY, Sun YN. EEG-based motor imagery analysis using weighted wavelet transform features. J Neurosci Methods. 2009;176:310–318.
  • Neuper C, Müller-Putz GR, Scherer R, et al. Motor imagery and EEG-based control of spelling devices and neuroprostheses. Prog Brain Res. 2006;159:393–409.
  • Mishuhina V, Jiang X. Feature weighting and regularization of common spatial patterns in EEG-based motor imagery BCI. IEEE Signal Process. Lett. 2018;25:783–787.
  • Lee HK, Choi YS. A convolution neural networks scheme for classification of motor imagery EEG based on wavelet time-frequecy image. Proceedings of the 2018 International Conference on Information Networking (ICOIN); 2018 Jan 10–12; Chiang Mai, Thailand. 2018. p. 906–909.
  • Taran S, Bajaj V. Motor imagery tasks-based EEG signals classification using tunable-Q wavelet transform. Neural Comput Appl. 2019;31:6925–6932.
  • Zhang K, Xu G, Chen L, et al. Instance transfer subject-dependent strategy for motor imagery signal classification using deep convolutional neural networks. Comput Math Methods Med. 2020; 2020.
  • Hogendoorn H, Burkitt AN. Predictive coding of visual object position ahead of moving objects revealed by time-resolved EEG decoding. Neuroimage. 2018;171:55–61.
  • Whyte CJ, Robinson A, Grootswagers T, et al. Decoding predictions and violations of object position and category in time-resolved EEG. bioRxiv. 2020.
  • López-Larraz E, Montesano L, Gil-Agudo Á, et al. Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates. J Neuroeng Rehabil. 2014;11:153.
  • Liu D, Chen W, Lee K, et al. Eeg-based lower-limb movement onset decoding: continuous classification and asynchronous detection. IEEE Trans Neural Syst Rehabil Eng. 2018;26:1626–1635.
  • Kuo CC, Knight JL, Dressel CA, et al. Non-invasive BCI for the decoding of intended arm reaching movement in prosthetic limb control. AJBE. 2012;2:155–162.
  • Müller-Putz GR, Schwarz A, Pereira J, et al. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach. Prog Brain Res. 2016;228:39–70.
  • Jochumsen M, Cremoux S, Robinault L, et al. Investigation of optimal afferent feedback modality for inducing neural plasticity with a self-paced brain-computer interface. Sensors. 2018;18:3761.
  • Wilkins KB, Owen M, Ingo C, et al. Neural plasticity in moderate to severe chronic stroke following a device-assisted task-specific arm/hand intervention. Front Neurol. 2017;8:284.
  • Jochumsen M, Navid MS, Nedergaard RW, et al. Self-paced online vs. cue-based offline brain–computer interfaces for inducing neural plasticity. Brain Sci. 2019;9:127.
  • Yuan H, Perdoni C, He B. Relationship between speed and EEG activity during imagined and executed hand movements. J Neural Eng. 2010;7:026001.
  • Bradberry TJ, Gentili RJ, Contreras-Vidal JL. Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. J Neurosci. 2010;30:3432–3437.
  • Antelis JM, Montesano L, Ramos-Murguialday A, et al. On the usage of linear regression models to reconstruct limb kinematics from low frequency EEG signals. PloS One. 2013;8:e61976.
  • Lv J, Li Y. Decoding hand movement velocities from EEG signals during a continuous drawing task. Proceedings of the 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery; 2010 Aug 10–12; Yantai, China. 2010. p. 2186–2189.
  • Ofner P, Müller-Putz GR. Using a noninvasive decoding method to classify rhythmic movement imaginations of the arm in two planes. IEEE Trans Biomed Eng. 2015;62:972–981.
  • Yang L, Leung H, Plank M, et al. EEG activity during movement planning encodes upcoming peak speed and acceleration and improves the accuracy in predicting hand kinematics. IEEE J Biomed Health Inform. 2015;19:22–28.
  • Úbeda A, Hortal E, Ianez E, et al. Assessing movement factors in upper limb kinematics decoding from EEG signals. PLoS One. 2015;10:e0128456.
  • Robinson N, Guan C, Vinod A. Adaptive estimation of hand movement trajectory in an EEG based brain–computer interface system. J Neural Eng. 2015;12:066019.
  • Li T, Xue T, Wang B, et al. Decoding voluntary movement of single hand based on analysis of brain connectivity by using EEG signals. Front Hum Neurosci. 2018;12:381.
  • Pohlmeyer EA, Mahmoudi B, Geng S, et al. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization. PLoS One. 2014;9:e87253.
  • Pei D, Patel V, Burns M, et al. Neural decoding of synergy-based hand movements using electroencephalography. IEEE Access. 2019;7:18155–18163.
  • Kim JH, Bießmann F, Lee SW. Decoding three-dimensional trajectory of executed and imagined arm movements from electroencephalogram signals. IEEE Trans Neural Syst Rehabil Eng. 2015;23:867–876.
  • von Hippel PT. The heterogeneity statistic I(2) can be biased in small meta-analyses. BMC Med Res Methodol. 2015;15:35.
  • Borenstein M, Hedges LV, Higgins JP, et al. A basic introduction to fixed‐effect and random‐effects models for meta‐analysis. Res Synth Methods. 2010;1:97–111.
  • Glasziou P, Sanders S. Investigating causes of heterogeneity in systematic reviews. Stat Med. 2002;21:1503–1511.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.