1,607
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 658-672 | Received 24 Feb 2020, Accepted 18 Mar 2021, Published online: 16 Apr 2021

References

  • Bütefisch C, Hummelsheim H, Denzler P, et al. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci. 1995;130(1):59–68.
  • Vergara M, Sancho-Bru JL, Gracia-Ibáñez V, et al. An introductory study of common grasps used by adults during performance of activities of daily living. J Hand Ther. 2014;27(3):225–234.
  • Murray CJL, Barber RM, Foreman KJ, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. The Lancet. 2015; 386(10009):2145–2191.
  • WHO: stroke, cerebrovascular accident. [Internet]. Available from: http://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html.
  • Jeanne C, Gordon A. Development of hand-arm bimanual intensive training (HABIT) for improving bimanual coordination in children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2006;48(11):931–936.
  • Comella CL, Stebbins GT, Brown-Toms N, et al. Physical therapy and Parkinson's disease: a controlled clinical trial. Neurology. 1994;44(3 Pt 1):376–378.
  • Freeman J, Langdon DW, Hobart JC, et al. The impact of inpatient rehabilitation on progressive multiple sclerosis. Ann Neurol. 1997;42(2):236–244.
  • Cao H, Zhang D. Soft robotic glove with integrated sEMG sensing for disabled people with hand paralysis. IEEE International Conference on Robotics and Biomimetics (ROBIO); 2016.
  • Maciejasz P, Eschweiler J, Gerlach-Hahn K, et al. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11(1):3.
  • Platz T. [Evidence-based arm rehabilitation-a systematic review of the literature]. Nervenarzt. 2003;74(10):841–849.
  • Aggogeri F, Mikolajczyk T, O’Kane J. Robotics for rehabilitation of hand movement in stroke survivors. Adv Mech Eng. 2019;11(4):168781401984192.
  • Loureiro RC, Harwin WS, Nagai K, et al. Advances in upper limb stroke rehabilitation: a technology push. Med Biol Eng Comput. 2011;49(10):1103–1118.
  • Scassellati B, Admoni H, Matarić M. Robots for use in autism research. Annu Rev Biomed Eng. 2012;14:275–294.
  • Fuente MPAG, de la Pinta, JR, García, AL. Interoperability systems. In: Service robotics within the digital home. Netherlands: Springe; 2011, p. 1–47.
  • Kwakkel G, Kollen BJ, Krebs HL. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–121.
  • Yoo DH, Kim SY. Effects of upper limb robot-assisted therapy in the rehabilitation of stroke patients. J Phys Ther Sci. 2015;27(3):677–679.
  • Denève A, Moughamir S, Afilal L, et al. Control system design of a 3-DOF upper limbs rehabilitation robot. Comput Methods Programs Biomed. 2008;89(2):202–214.
  • Lo AC, Guarino PD, Richards LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–1783.
  • Chang WH, Kim YH. Robot-assisted therapy in stroke rehabilitation. J Stroke. 2013;15(3):174–181.
  • Veerbeek JM, Langbroek-Amersfoort AC, vanWegen EE, et al. Effects of robot-assisted therapy for the upper limb after stroke: a systematic review and meta-analysis. Neurorehabil Neural Repair. 2017;31(2):107–121.
  • Poli P, Morone G, Rosati G, et al. Robotic technologies and rehabilitation: new tools for stroke patients' therapy. Biomed Res Int. 2013;2013:153872.
  • Mohammed S, Park HW, Park CH, et al. Special issue on assistive and rehabilitation robotics. Auton Robot. 2017;41(3):513–517.
  • Novak D, Riener R. A survey of sensor fusion methods in wearable robotics. Rob Auton Syst. 2015; 73:155–170.
  • Takahashi CD, Der-Yeghiaian L, Motiwala VLRR, et al. Robot-based hand motor therapy after stroke. Brain. 2008;131(2):425–437.
  • Polygerinos P, Wang Z, Galloway KC, et al. Soft robotic glove for combined assistance and at-home rehabilitation. Rob Auton Syst. 2015;73:135–143.
  • Meng W, Liu Q, Zhou Z, et al. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics. 2015;31:132–145.
  • Frisoli A, Borelli L, Montagner A, et al. Arm rehabilitation with a robotic exoskeleton in virtual reality. In: IEEE 10th International Conference on Rehabilitation Robotics (ICORR); 2008 Jun 13–15; Noordwijk, Netherlands. IEEE; 2007. p. 631–642.
  • Rehmat N, Zuo J, Meng W, et al. Upper limb rehabilitation using robotic exoskeleton systems: a systematic review. Int J Intell Robot Appl. 2018;2(3):283–295.
  • Krebs HI, Ferraro M, Buerger SP, et al. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J Neuroeng Rehabil. 2004;1(1):5.
  • Lum PS, Burgar CG, Van der Loos M, et al. The MIME robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke. 9th International Conference on Rehabilitation Robotics; 2005. Available from: 10.1109/ICORR.2005.1501153.
  • Formaggio E, Storti SF, Galazzo IB, et al. Time–frequency modulation of ERD and EEG coherence in robot-assisted hand performance. Brain Topogr. 2015;28(2):352–363.
  • Bissolotti L, Villafañe JH, Gaffurini P, et al. Changes in skeletal muscle perfusion and spasticity in patients with poststroke hemiparesis treated by robotic assistance (Gloreha) of the hand. J Phys Ther Sci. 2016;28(3):769–773.
  • Francisco GE, Yozbatiran N, Berliner J, et al. Robot-assisted training of arm and hand movement shows functional improvements for incomplete cervical spinal cord injury. Am J Phys Med Rehabil. 2017;96(10 Suppl 1):S171–S177.
  • Coote S, Murphy B, Harwin W, et al. The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin Rehabil. 2008;22(5):395–405.
  • Perry JC, Rosen J, Burns S. Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatron. 2007;12(4):408–417.
  • Huang J, Tu X, He J. Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies. IEEE Trans Syst Man Cybern Syst. 2016;46(7):926–935.
  • Popov D, Gaponov I, Ryu JH. Portable exoskeleton glove with soft structure for hand assistance in activities of daily living. IEEE/ASME Trans Mechatron. 2017;22(2):865–875.
  • Karam A, Alnajjar F, Gochoo M. Assistive and rehabilitation robotics for upper limb impairments in post-stroke patients: evaluation criteria for the design and functionality. 2020 Advances in Science and Engineering Technology International Conferences (ASET); pp. 1–4.
  • Verhagen AP, De Vet HC, De Bie RA, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51(12):1235–1241.
  • Osuagwu BA, Timms S, Peachment R, et al. Taylor J, 2018, October. Clinical trial of the soft extra muscle glove to assess orthotic and long-term functional gain following chronic incomplete tetraplegia: preliminary functional results. International Conference on NeuroRehabilitation. Cham: Springer; pp. 385–389.
  • Zhou YM, Wagner D, Nuckols K, et al. Soft robotic glove with integrated sensing for intuitive grasping assistance post spinal cord injury. 2019 International Conference on Robotics and Automation (ICRA). 2019. Available from: 10.1109/ICRA.2019.8794367.
  • Yurkewich A, Hebert D, Wang RH, et al. Hand Extension Robot Orthosis (HERO) glove: development and testing with stroke survivors with severe hand impairment. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):916–926.
  • Rong W, Li W, Pang M, et al. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. J. NeuroEng Rehab. 2017;14:34.
  • El-Shamy SM. Efficacy of Armeo® Robotic Therapy versus conventional therapy on upper limb function in children with hemiplegic cerebral palsy. Am J Phys Med Rehabil. 2018;97(3):164–169.
  • Radder B, Prange-Lasonder GB, Kottink AIR, et al. Home rehabilitation supported by a wearable soft-robotic device for improving hand function in older adults: a pilot randomized controlled trial. PLOS One. 2019;14(8):e0220544
  • Cimolin V, Germiniasi C, Galli M, et al. Robot-assisted upper limb training for hemiplegic children with. J Dev Phys Disabil. 2019;31(1):89–101.
  • Cappello L, Meyer JT, Galloway KC, et al. Assisting hand function after spinal cord injury with a fabric-based soft robotic glove. J Neuroeng Rehabil. 2018;15(1):59.
  • Bernocchi P, Mulè C, Vanoglio F, et al. Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: a pilot feasibility study. Top Stroke Rehabil. 2018;25(2):114–119.
  • Frullo JM, Elinger J, Pehlivan AU, et al. Effects of assist-as-needed upper extremity robotic therapy after incomplete spinal cord injury: a parallel-group controlled trial. Front Neurorobot. 2017;11:26.
  • Hsu H, Chiu H, Kuan T, et al. Robotic‐assisted therapy with bilateral practice improves task and motor performance in the upper extremities of chronic stroke patients: A randomised controlled trial. Aust Occup Ther J. 2019;66(5):637–647.
  • Kim J, Lee BS, Lee HJ, et al. Clinical efficacy of upper limb robotic therapy in people with tetraplegia: a pilot randomized controlled trial. Spinal Cord. 2019;57(1):49–57.
  • Min-Su K, Sung K, Noh SF, et al. Robotic-assisted shoulder rehabilitation therapy effectively improved poststroke hemiplegic shoulder pain: a randomized controlled trial. Archives of Phys. Med. Rehab. 2019;100(6):1015–1022.
  • Park S, Bishop L, Post T, et al. On the feasibility of wearable exotendon networks for whole-hand movement patterns in stroke patients. 2016 IEEE International Conference on Robotics and Automation (ICRA) 2016. Available from: 10.1109/ICRA.2016.7487560.
  • Pilla A, Trigili E, McKinney Z, et al. Robotic rehabilitation and multimodal instrumented assessment of post-stroke elbow motor functions—a randomized controlled trial protocol. Front Neurol. 2020;11:1294.
  • Lee SH, Park G, Cho DY, et al. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Sci Rep. 2020;10(1):1–8.
  • Ranzani R, Lambercy O, Metzger JC, et al. Neurocognitive robot-assisted rehabilitation of hand function: a randomized control trial on motor recovery in subacute stroke. J NeuroEngineering Rehabil. 2020;17(1):1–13.
  • Chinembiri B, Ming Z, Kai S, et al. The fourier M2 robotic machine combined with occupational therapy on post-stroke upper limb function and independence-related quality of life: a randomized clinical trial. Top Stroke Rehabil. 2021;28(1):1–18.
  • Cuesta-Gómez A, Sánchez-Herrera-Baeza P, Oña-Simbaña ED, et al. Effects of virtual reality associated with serious games for upper limb rehabilitation inpatients with multiple sclerosis: randomized controlled trial. J NeuroEngineering Rehabil. 2020;17(1):1–10.
  • Cho KH, Song WK. Effects of two different robot-assisted arm training on upper limb motor function and kinematics in chronic stroke survivors: a randomized controlled trial. Topics Stroke Rehabil. 2020;1–10. DOI:10.1080/10749357.2020.1804699
  • Zhang L, Guo S, Sun Q. An assist-as-needed controller for passive, assistant, active, and resistive robot-aided rehabilitation training of the upper extremity. Appl Sci. 2020;11(1):340.
  • Keeling AB, Piitz M, Semrau JA, et al. Robot enhanced stroke therapy optimizes rehabilitation (RESTORE): a pilot study. J NeuroEngineering Rehabil. 2021;18(1):1–16.
  • Aprile I, Germanotta M, Cruciani A, FDG Robotic Rehabilitation Group, et al. Upper limb robotic rehabilitation after stroke: a multicenter, randomized clinical trial. J Neurol Phys Ther. 2020;44(1):3–14.
  • Dehem S, Gilliaux M, Lejeune T, et al. Effectiveness of a single session of dual-transcranial direct current stimulation in combination with upper limb robotic-assisted rehabilitation in chronic stroke patients: a randomized, double-blind, cross-over study. Int J Rehabil Res. 2018;41(2):138–145.
  • Edwards DJ, Cortes M, Rykman-Peltz A, et al. Clinical improvement with intensive robot-assisted arm training in chronic stroke is unchanged by supplementary tDCS. RNN. 2019;37(2):167–180.
  • Singh N, Saini M, Kumar N, et al. Evidence of neuroplasticity with robotic hand exoskeleton study for post-stroke rehabilitation: a randomized controlled trial. 2021;1–16. DOI:10.21203/rs.3.rs-67841/v2
  • Babaiasl M, Jaryani P, Mahdioun S, et al. Assistive Technology A review of technological and clinical aspects of robot- aided rehabilitation of upper-extremity after stroke. Disabil Rehabil Assist Technol. 2015;11:1–18.
  • Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, et al. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43(2):171–184.
  • Dollar AM, Herr H. Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Trans Robot. 2008;24(1):144–158.
  • Yan T, Cempini M, Oddo CM, et al. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Rob Auton Syst. 2015;64:120–136.
  • Windrich M, Grimmer M, Christ O, et al. Active lower limb prosthetics: a systematic review of design issues and solutions. BioMed Eng Online. 2016;15(S3):5–19.
  • Beckerle P, Salvietti G, Unal R, et al. A human-robot interaction perspective on assistive and rehabilitation robotics. Front Neurorobot. 2017;11:24.
  • Alnajjar F, Ozaki KI, Itkonen M, et al. Self-support biofeedback training for recovery from motor impairment after stroke. IEEE Access. 2020;8:72138–72157. DOI:10.1109/ACCESS.2020.2987095

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.