79
Views
0
CrossRef citations to date
0
Altmetric
Research on Products and Devices

SWADAPT2: benefits of a collision avoidance assistance for powered wheelchair users in driving difficulty

ORCID Icon, , , , , ORCID Icon, , ORCID Icon & show all
Pages 1907-1915 | Received 19 Oct 2022, Accepted 21 Aug 2023, Published online: 08 Sep 2023

References

  • World Health Organization. Guidelines on the provision of manual wheelchairs in less resourced settings. Geneva, Switzerland: World Health Organization; 2008.
  • Kokosy A, Floquet T, Howells G, et al. SYSIASS? an intelligent powered wheelchair. Proceedings of 1st International Conference on Systems and Computer Science, Villeneuve d'Ascq, France; 2013.
  • Steinmetz E. Americans with disabilities: 2002. Suitland-Silver Hill (MD): US Census Bureau Current Population Report; 2002. p. 70–107.
  • Smith EM, Giesbrecht EM, Wb M, et al. Prevalence of wheelchair and scooter use among Community-Dwelling Canadians. Phys Ther. 2016;56(11):1069–1075.
  • Vignier N, Ravaud JF, Winance M, et al. Demographics of wheelchair users in France: results of national community-based handicaps-incapacites-dependance surveys. J Rehabil Med. 2008;40(3):231–239. doi: 10.2340/16501977-0159.
  • Sedgwick M, Frank A, Kemp P, et al. Improving services for wheelchair users and carers. Good practice guide: learning from the wheelchair services collaborative. London: NHS, Department of Health; 2005.
  • Xiang H, Chany AM, Smith GA. Wheelchair related injuries treated in US emergency departments. Inj Prev. 2006;12(1):8–11. doi: 10.1136/ip.2005.010033.
  • Edwards K, Mccluskey A. A survey of adult power wheelchair and scooter users. Disabil Rehabil Assist Technol. 2010;5(6):411–419. doi: 10.3109/17483101003793412.
  • Chen WY, Jang Y, Wang JD, et al. Wheelchair-related accidents: relationship with wheelchair-using behavior in active community wheelchair users. Arch Phys Med Rehabil. 2011;92(6):892–898. doi: 10.1016/j.apmr.2011.01.008.
  • Kim DJ, Lee HJ, Yang YA. The status of accidents and management for electronic assistive devices among the handicapped. KJ-HSM. 2016;10(3):223–234. doi: 10.12811/kshsm.2016.10.3.223.
  • Henje C, Stenberg G, Lundalv J, et al. Obstacles and risks in the traffic environment for users of powered wheelchairs in Sweden. Accid Anal Prev. 2021;159:106259. doi: 10.1016/j.aap.2021.106259.
  • Ummat S, Kirby RL. Nonfatal wheelchair-related accidents reported to the national electronic injury surveillance system. Am J Phys Med Rehabil. 1994;73(3):163–167. doi: 10.1097/00002060-199406000-00004.
  • McClure LA, Boninger ML, Oyster ML, et al. Wheelchair repairs, breakdown, and adverse consequences for people with traumatic spinal cord injury. Arch Phys Med Rehabil. 2009;90(12):2034–2038. doi: 10.1016/j.apmr.2009.07.020.
  • Brandt A, Iwarsson S, Stahle A. Older people’s use of powered wheelchairs for activity and participation. J Rehabil Med. 2004;36(2):70–77. doi: 10.1080/16501970310017432.
  • Davies A, DE Souza LH, Frank AO. Changes in the quality of life in severely disabled people following provision of powered indoor/outdoor chairs. Disabil Rehabil. 2003;25(6):286–290. doi: 10.1080/0963828021000043734.
  • Pettersson I, Ahlstrom G, Tornquist K. The value of an outdoor powered wheelchair with regard to the quality of life of persons with stroke: a follow-up study. Assist Technol. 2007;19(3):143–153. doi: 10.1080/10400435.2007.10131871.
  • Cooper RA, Thorman T, Cooper R, et al. Driving characteristics of electric-powered wheelchair users: how far, fast, and often do people drive? Arch Phys Med Rehabil. 2002;83(2):250–255. doi: 10.1053/apmr.2002.28020.
  • Fehr L, Langbein WE, Skaar SB. Adequacy of power wheelchair control interfaces for persons with severe disabilities: a clinical survey. J Rehabil Res Dev. 2000;37(3):353–360.
  • Rushton PW, Kairy D, Archambault P, et al. The potential impact of intelligent power wheelchair use on social participation: perspectives of users, caregivers and clinicians. Disabil Rehabil Assist Technol. 2015;10(3):191–197.
  • Gallien P, Nicolas B, Durufle A, et al. Quality of life of adults with cerebral palsy living in britanny. Ann Phys Rehabil Med. 2015;58:e131–e132. doi: 10.1016/j.rehab.2015.07.313.
  • Levine SP, Bell DA, Jaros LA, et al. The NavChair assistive wheelchair navigation system. IEEE Trans Rehabil Eng. 1999;7(4):443–451. doi: 10.1109/86.808948.
  • Ragot N, Caron G, Sakel M, et al. Coalas: a eu multidisciplinary research project for assistive robotics neuro-rehabilitation. IEEE/RSJ International Conference on Intelligent Robots (IROS) workshop on rehabilitation and assistive robotics: bridging the gap between clinicians and roboticists. Chicago; sept. 2014.
  • Babel M, Pasteau F, Devigne L, et al. HandiViz project: clinical validation of a driving assistance for electrical wheelchair. Piscataway (NJ): IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO); Lyon, France, Jul. 2015. p. 1–6. doi: 10.1109/ARSO.2015.7428213.
  • Kokosy A, Floquet T, Howells G, et al. SYSIASS? An intelligent powered wheelchair. Proceedings of 1st International Conference on Systems and Computer Science, Villeneuve d'Ascq, France; 2013.
  • Leblong E, Fraudet B, Devigne L, et al. SWADAPT1: assessment of an electric wheelchair-driving robotic module in standardized circuits: a prospective, controlled repeated measure design pilot study. J Neuroeng Rehabil. 2021;18(1):140. doi: 10.1186/s12984-021-00923-2.
  • Mihailidis A, Elinas P, Boger J, et al. An intelligent powered wheelchair to enable mobility of cognitively impaired older adults: an anticollision system. IEEE Trans Neural Syst Rehabil Eng. 2007;15(1):136–143. doi: 10.1109/TNSRE.2007.891385.
  • Demeester E, Vander Poorten E, Hüntemann A, et al. Wheelchair navigation assistance in the fp7 project radhar: objectives and current state. In IROS 2012 Workshop on Progress, Challenges and Future Perspectives in Navigation and Manipulation Assistance for Robotic Wheelchairs, 2012/10/12-2012/10/12, Vilamoura, Portugal. 2012.
  • Favey C, Farcy R, Donnez J, et al. Development of a new negative obstacle sensor for augmented electric wheelchair. Sensors. 2021;21(19):6341. doi: 10.3390/s21196341.
  • Simpson RC. Smart wheelchairs: a literature review. J Rehabil Res Dev. 2005;42(4):423–436. doi: 10.1682/jrrd.2004.08.0101.
  • Leaman J, LA HM. A comprehensive review of smart wheelchair past, present, and future. IEEE Trans Human-Mach Syst. 2017;47(4):486–499. doi: 10.1109/THMS.2017.2706727.
  • Simpson R, Lopresti E, Hayashi S, et al. A prototype power assist wheelchair that provides for obstacle detection and avoidance for those with visual impairments. J Neuroeng Rehabil. 2005;2(1):30. doi: 10.1186/1743-0003-2-30.
  • Available from: https://www.smilesmart-tech.com/
  • Available from: https://luci.com
  • Pellichero A, Best KL, Routhier F, et al. Blind spot sensor systems for power wheelchairs: obstacle detection accuracy, cognitive task load, and perceived usefulness among older adults. Disabil Rehabil Assist Technol. 2021;9:1–9. doi: 10.1080/17483107.2021.1983654.
  • ADAPT (Assistive Devices for empowering disAbled People through robotic Technologie). 2017. Available from: http://adapt-project.com/index-en.php
  • Hart SG. NASA-task load index (NASA-TLX); 20 years later. Proceedings of the human factors and ergonomics society annual meeting. Los Angeles (CA): Elsevier; 2006. p. 904–908. doi: 10.1177/154193120605000909.
  • Grier RA. How high is high? A meta-analysis of NASA-TLX global workload scores. Proceedings of the Human Factors and Ergonomics Society Annual Meeting; Vol. 59; Los Angeles (CA): SAGE Publications; 2015. p. 1727–1731. doi: 10.1177/1541931215591373.
  • Lund A M. Measuring usability with the USE questionnaire. STC Usabil SIG Newslett. 2001;8(2):3–6.
  • Boucher P AA, Kelouwani S, et al. Design and validatyion of an intelligent wheelchair towards a clinically_functional outcome. J Neuroeng Rehabil. 2013;10(1):58.
  • Simpson RC, Levine SP. Voice control of a powered wheelchair. IEEE Trans Neural Syst Rehabil Eng. 2002;10(2):122–125. doi: 10.1109/TNSRE.2002.1031981.
  • Aziz F, Arof H, Mokhtar N, et al. HMM based automated wheelchair navigation using EOG traces in EEG. J Neurosci. 2014;56(11):1069–1075.
  • Faria MB, Vasconcelos S P, Reis L, et al. Evaluation of distinct input methods of an intelligent wheelchair in simulated and real environments: a performance and usability study. Assist Technol. 2013;25(2):88–98. doi: 10.1080/10400435.2012.723297.
  • Lamti HA, Gorce P, Ben Khelifa MM, et al. When mental fatigue maybe characterized by event related potential (P300) during virtual wheelchair navigation. Comput Methods Biomech Biomed Engin. 2016;19(16):1749–1759. doi: 10.1080/10255842.2016.1183198.
  • Li J, Liang J, Zhao Q, et al. Design of assistive wheelchair system directly steered by human thoughts. Int J Neural Syst. 2013;23(3):1350013. doi: 10.1142/S0129065713500135.
  • Nguyen Js A, Su SW, Nguyen HT. Experimental study on a smart wheelchair system using a combination of stereoscopic and spherical vision. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Piscataway (NJ): IEEE; 2013. p. 4597–4600. doi: 10.1109/EMBC.2013.6610571.
  • Rojas M, Ponce P, Molina A. Skills based evaluation of alternative input methods to command a semi-autonomous electric wheelchair. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Piscataway (NJ): IEEE; 2016. p. 4593–4596. doi: 10.1109/EMBC.2016.7591750.
  • Sharma V, Simpson R, Lopresti E, et al. Evaluation of semiautonomous navigation assistance system for power wheelchairs with blindfolded nondisabled individuals. J Rehabil Res Dev. 2010;47(9):877–890. doi: 10.1682/jrrd.2010.02.0012.
  • Stansfield S, Dennis C, Altman R, et al. A comparison of the efficacy of weight-shift vs. joystick control of a robotic mobility device by infants ages 5 to 10 months. Assist Technol. 2018;30(2):84–90. doi: 10.1080/10400435.2016.1262479.
  • (a) Zhang R, Li Y, Yan Y, et al. Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation. IEEE Trans Neural Syst Rehabil Eng. 2016;24(1):128–139. doi: 10.1109/TNSRE.2015.2439298. (b) Uat Cheein FA, Lopez N, Soria CM, et al. SLAM algorithm applied to robotics assistance for navigation in unknown environments. J NeuroEng Rehabil. 2010;7(1):1–16.
  • Puanhvuan D, Khemmachotikun S, Wechakarn P, et al. Navigation-synchronized multimodal control wheelchair from brain to alternative assistive technologies for persons with severe disabilities. Cogn Neurodyn. 2017;11(2):117–134. doi: 10.1007/s11571-017-9424-6.
  • Rebsamen B, Guan C, Zhang H, et al. A brain controlled wheelchair to navigate in familiar environments. IEEE Trans Neural Syst Rehabil Eng. 2010;18(6):590–598. doi: 10.1109/TNSRE.2010.2049862.
  • Ron-Angevin R, Velasco-Álvarez F, Fernández-Rodríguez Á, et al. Brain-computer interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair. J Neuroeng Rehabil. 2017;14(1):49. doi: 10.1186/s12984-017-0261-y.
  • Tsui CSL, Gan JQ, Hu H. A self-paced motor imagery based brain-computer interface for robotic wheelchair control. Clin EEG Neurosci. 2011;42(4):225–229. doi: 10.1177/155005941104200407.
  • Wästlund E, Sponseller K, Pettersson O, et al. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities. J Rehabil Res Dev. 2015;52(7):815–826.
  • Bastos-Filho TF, Cheein FA, Müller SMT, et al. Towards a new modality-independent interface for a robotic wheelchair. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):567–584. doi: 10.1109/TNSRE.2013.2265237.
  • Auat Cheein FA, Lopez N, Soria CM, et al. SLAM algorithm applied to robotics assistance for navigation in unknown environments. J Neuroeng Rehabil. 2010;7(1):10. doi: 10.1186/1743-0003-7-10.
  • He S, Zhang R, Wang Q, et al. A P300-based threshold-free brain switch and its application in wheelchair control. IEEE Trans Neural Syst Rehabil Eng. 2017;25(6):715–725. doi: 10.1109/TNSRE.2016.2591012.
  • How TV, Wang RH, Mihailidis A. Evaluation of an intelligent wheelchair system for older adults with cognitive impairments. J Neuroeng Rehabil. 2013;10(1):90 doi: 10.1186/1743-0003-10-90.
  • McGARRY S, Moir L, Girdler S. The smart wheelchair: is it an appropriate mobility training tool for children with physical disabilities? Disabil Rehabil Assist Technol. 2012;7(5):372–380. doi: 10.3109/17483107.2011.637283.
  • Ceres R, Pons JL, Calderon L, et al. A robotic vehicle for disabled children. Providing assisted mobility with the PALMA project. IEEE Eng Med Biol Mag. 2005;24(6):55–63. doi: 10.1109/memb.2005.1549731.
  • Wang RH, Mihailidis A, Dutta T, et al. Usability testing of multimodal feedback interface and simulated collision-avoidance power wheelchair for long-term-care home residents with cognitive impairments. J Rehabil Res Dev. 2011;48(7):801–822.
  • Ju JS, Shin Y, Kim EY. Vision based interface system for hands free control of an intelligent wheelchair. J Neuroeng Rehabil. 2009;6(1):33. doi: 10.1186/1743-0003-6-33.
  • Shiomi M, Iio T, Kamei K, et al. Effectiveness of social behaviors for autonomous wheelchair robot to support elderly people in Japan. PLoS One. 2015;10(5):e0128031. doi: 10.1371/journal.pone.0128031.
  • Tomari MR, Kobayashi Y, Kuno Y. Development of smart wheelchair system for a user with severe motor impairment. Procedia Eng. 2012;41:538–546. doi: 10.1016/j.proeng.2012.07.209.
  • Rathore DK, Srivastava P, Pandey S, et al. A novel multipurpose smart wheelchair. in: IEEE students’ conference on Electrical, Electronics and Computer Science; Piscataway (NJ): IEEE; p. 1–4, Bhopal, Mar. 2014.
  • Sivakanthan S, Candiotti JL, Sundaram AS, et al. Mini-review: robotic wheelchair taxonomy and readiness. Neurosci Lett. 2022;772:136482. doi: 10.1016/j.neulet.2022.136482.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.