447
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Use of eye-gaze technology feedback by assistive technology professionals: findings from a thematic analysis

ORCID Icon, ORCID Icon & ORCID Icon
Received 15 Sep 2023, Accepted 27 Mar 2024, Published online: 09 Apr 2024

References

  • Ball L, Nordness A, Fager S, et al. Eye-gaze access to AAC technology for people with amyotrophic lateral sclerosis. J Med Speech Lang Pathol. 2010;18:11–23.
  • Borgestig M, Rytterström P, Hemmingsson H. Gaze-based assistive technology used in daily life by children with severe physical impairments – parents’ experiences. Dev Neurorehabil. 2017;20(5):301–308. doi: 10.1080/17518423.2016.1211769.
  • Hsieh Y-H, Borgestig M, Gopalarao D, et al. Communicative interaction with and without eye-gaze technology between children and youths with complex needs and their communication partners. IJERPH. 2021;18(10):5134. doi: 10.3390/ijerph18105134.
  • Vessoyan K, Smart E, Steckle G, et al. A scoping review of eye tracking technology for communication: current progress and next steps. Curr Dev Disord Rep. 2023;10(1):20–39. doi: 10.1007/s40474-023-00271-x.
  • Holmqvist K, Nyström M, Andersson R, et al. Eye tracking: a comprehensive guide to methods and measures. 1st ed. Oxford: Oxford University Press; 2011.
  • Bekteshi S, Karlsson P, De Reyck L, et al. Eye movements and stress during eye‐tracking gaming performance in children with dyskinetic cerebral palsy. Dev Med Child Neurol. 2022;64(11):1402–1415. doi: 10.1111/dmcn.15237.
  • Karlsson P, Allsop A, Dee-Price B-J, et al. Eye-gaze control technology for children, adolescents and adults with cerebral palsy with significant physical disability: findings from a systematic review. Dev Neurorehabil. 2018;21(8):497–505. doi: 10.1080/17518423.2017.1362057.
  • Karlsson P, Griffiths T, Clarke MT, et al. Stakeholder consensus for decision making in eye-gaze control technology for children, adolescents and adults with cerebral palsy service provision: findings from a Delphi study. BMC Neurol. 2021;21(1):63. doi: 10.1186/s12883-021-02077-z.
  • Eyes on Communication Research Group. Eye-gaze control technology for people with cerebral palsy – clinical guidelines [Internet]. Cerebral Palsy Alliance, The University of Sydney; 2021 [cited 2023 Apr 28]. Available from: https://redcap.sydney.edu.au/surveys/?s=EDC7P4E3TP
  • NHS England. Guidance for Commissioning AAC Services and Equipment; 2016.
  • Lynch Y, Murray J, Moulam L, et al. Decision-making in communication aid recommendations in the UK: cultural and contextual influencers. Augment Altern Commun. 2019;35(3):180–192. doi: 10.1080/07434618.2019.1599066.
  • Bates R, Donegan M, Istance HO, et al. Introducing COGAIN – communication by gaze interaction. Designing accessible technology [Internet]. London: Springer; 2006. p. 77–84. doi: 10.1007/1-84628-365-5_8.
  • Sowers DJ. The effects of intermediary feedback on eye tracking as an access method for AAC [Internet] [doctoral thesis]. University Park (PA): The Pennsylvania State University; 2022 [cited 2023 Jul 12]. Available from: https://etda.libraries.psu.edu/catalog/20385djs6974
  • Bojko A. Informative or misleading? Heatmaps deconstructed. In: Jacko JA, editor. Human-computer interaction new trends [Internet]. Berlin; Heidelberg: Springer Berlin Heidelberg; 2009 [cited 2023 Jul 12]. p. 30–39. Available from: http://link.springer.com/10<?sch-permit JATS-0034-007?>.1007/978-3-642-02574-7_4
  • Varpio L, Ajjawi R, Monrouxe LV, et al. Shedding the cobra effect: problematising thematic emergence, triangulation, saturation and member checking. Med Educ. 2017;51(1):40–50. doi: 10.1111/medu.13124.
  • Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. Int J Qual Health Care. 2007;19(6):349–357. doi: 10.1093/intqhc/mzm042.
  • Malterud K, Siersma VD, Guassora AD. Sample size in qualitative interview studies: guided by information power. Qual Health Res. 2016;26(13):1753–1760. doi: 10.1177/1049732315617444.
  • King N, Brooks JM. Doing template analysis: a guide to the main components and procedures. Template analysis for business and management students [Internet]. London: SAGE Publications Ltd; 2017. p. 25–46. doi: 10.4135/9781473983304.n3.
  • Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3(2):77–101. doi: 10.1191/1478088706qp063oa.
  • Souto D, Marsh O, Hutchinson C, et al. Cognitive plasticity induced by gaze-control technology: gaze-typing improves performance in the antisaccade task. Comput Hum Behav. 2021;122:106831. doi: 10.1016/j.chb.2021.106831.
  • Wilkinson KM, O’Neill T, McIlvane WJ. Eye-tracking measures reveal how changes in the design of aided AAC displays influence the efficiency of locating symbols by school-age children without disabilities. J Speech Lang Hear Res. 2014;57(2):455–466. doi: 10.1044/2013_JSLHR-L-12-0159.
  • Venker CE, Kover ST. An open conversation on using eye-gaze methods in studies of neurodevelopmental disorders. J Speech Lang Hear Res. 2015;58(6):1719–1732. doi: 10.1044/2015_JSLHR-L-14-0304.
  • Wilkinson KM, Wolf SJ. An in-depth case description of gaze patterns of an individual with cortical visual impairment to stimuli of varying complexity: implications for augmentative and alternative communication design. Perspect ASHA SIGs. 2021;6(6):1591–1602. doi: 10.1044/2021_PERSP-21-00111.
  • Borgestig M, Sandqvist J, Parsons R, et al. Eye gaze performance for children with severe physical impairments using gaze-based assistive technology—a longitudinal study. Assist Technol. 2016;28(2):93–102. doi: 10.1080/10400435.2015.1092182.
  • Stokes TS, Roden P. Establishing the key components of an eye gaze assessment for a child with a severe neurodisability using nominal group technique. Edorium J Disabil Rehabil. 2017;3:62–68.
  • Fager S, Bardach L, Russell S, et al. Access to augmentative and alternative communication: new technologies and clinical decision-making. J Pediatr Rehabil Med. 2012;5(1):53–61. doi: 10.3233/PRM-2012-0196.
  • Greene MR, Liu T, Wolfe JM. Reconsidering yarbus: a failure to predict observers’ task from eye movement patterns. Vision Res. 2012;62:1–8. doi: 10.1016/j.visres.2012.03.019.
  • Light J, McNaughton D. From basic to applied research to improve outcomes for individuals who require augmentative and alternative communication: potential contributions of eye tracking research methods. Augment Altern Commun. 2014;30(2):99–105. doi: 10.3109/07434618.2014.906498.
  • Wilkinson KM, Mitchell T. Eye tracking research to answer questions about augmentative and alternative communication assessment and intervention. Augment Altern Commun. 2014;30(2):106–119. doi: 10.3109/07434618.2014.904435.
  • Karlsson P, Honan I, Warschausky S, et al. A validation and acceptability study of cognitive testing using switch and eye-gaze control technologies for children with motor and speech impairments: a protocol paper. Front Psychol. 2022;13:991000. doi: 10.3389/fpsyg.2022.991000.
  • Colenbrander A. Aspects of vision loss – visual functions and functional vision. Vis Impair Res. 2003;5(3):115–136. doi: 10.1080/1388235039048919.
  • Deramore Denver B, Adolfsson M, Froude E, et al. Methods for conceptualising ‘visual ability’ as a measurable construct in children with cerebral palsy. BMC Med Res Methodol. 2017;17(1):46. doi: 10.1186/s12874-017-0316-6.
  • Stadskleiv K. Cognitive functioning in children with cerebral palsy. Dev Med Child Neurol. 2020;62(3):283–289. doi: 10.1111/dmcn.14463.
  • Tatler BW, Wade NJ, Kwan H, et al. Yarbus, eye movements, and vision. Iperception. 2010;1(1):7–27. doi: 10.1068/i0382.
  • Jacob RJK. Eye movement-based human-computer interaction techniques: toward non-command interfaces. In: Harston HR, Hix D, editors. Advances in human-computer interaction [Internet]. Norwood (NJ): Abex Publishing Co.; 1993. p. 151–190. Available from: http://www.cs.tufts.edu/∼jacob/papers/hartson.pdf
  • Orban De Xivry J-J, Lefèvre P. Saccades and pursuit: two outcomes of a single sensorimotor process: saccades and smooth pursuit eye movements. J Physiol. 2007;584(Pt 1):11–23. doi: 10.1113/jphysiol.2007.139881.
  • Souto D, Kerzel D. Visual selective attention and the control of tracking eye movements: a critical review. J Neurophysiol. 2021;125(5):1552–1576. doi: 10.1152/jn.00145.2019.
  • Theeuwes J, Kramer AF, Hahn S, et al. Our eyes do not always go where we want them to go: capture of the eyes by new objects. Psychol Sci. 1998;9(5):379–385. doi: 10.1111/1467-9280.00071.
  • Dorr M, Martinetz T, Gegenfurtner KR, et al. Variability of eye movements when viewing dynamic natural scenes. J Vis. 2010;10(10):28–28. doi: 10.1167/10.10.28.
  • Bekteshi S, Konings M, Karlsson P, et al. Teleintervention for users of augmentative and alternative communication devices: a systematic review. Dev Med Child Neurol. 2023;65(2):171–184. doi: 10.1111/dmcn.15387.
  • Therrien MCS, Biggs EE, Barton-Hulsey A, et al. Augmentative and alternative communication services during the COVID-19 pandemic: impact on children, their families and service providers. Augment Altern Commun. 2022;38(4):197–208. doi: 10.1080/07434618.2022.2135136.
  • Majaranta P, Ahola U-K, Špakov O. Fast gaze typing with an adjustable dwell time. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems [Internet]. Boston (MA): ACM; 2009 [cited 2023 Jul 17]. p. 357–360. Available from: https://dl.acm.org/doi/10<?sch-permit JATS-0034-007?>.1145/1518701.1518758 doi: 10.1145/1518701.1518758.
  • Kristensson PO, Mjelde M, Vertanen K. Understanding adoption barriers to dwell-free eye-typing: design implications from a qualitative deployment study and computational simulations. Proceedings of the 28th International Conference on Intelligent User Interfaces [Internet]. Sydney: ACM; 2023 [cited 2023 Jun 26]. p. 607–620. Available from: https://dl.acm.org/doi/10<?sch-permit JATS-0034-007?>.1145/3581641.3584093 doi: 10.1145/3581641.3584093.
  • Gorman BM, Crabb M, Armstrong M. Adaptive subtitles: preferences and trade-offs in real-time media adaption. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems [Internet]. Yokohama: ACM; 2021 [cited 2023 Jul 21]. p. 1–11. Available from: https://dl.acm.org/doi/10<?sch-permit JATS-0034-007?>.1145/3411764.3445509 doi: 10.1145/3411764.3445509.
  • Wobbrock JO. Improving pointing in graphical user interfaces for people with motor impairments through ability-based design. In: Kouroupetroglou G, editor. Assistive technologies and computer access for motor disabilities. Hershey (PA): Medical Information Science Reference; 2014.
  • Light J, Wilkinson KM, Thiessen A, et al. Designing effective AAC displays for individuals with developmental or acquired disabilities: state of the science and future research directions. Augment Altern Commun. 2019;35(1):42–55. doi: 10.1080/07434618.2018.1558283.
  • Thistle JJ, Wilkinson KM. Building evidence-based practice in AAC display design for young children: current practices and future directions. Augment Altern Commun. 2015;31(2):124–136. doi: 10.3109/07434618.2015.1035798.