79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Outcome measures applied to robotic assistive technology for people with cerebral palsy: a pilot study

, , , , , , & show all
Received 02 Jan 2024, Accepted 01 Apr 2024, Published online: 15 Apr 2024

References

  • Asociación Española de Normalización. Une-EN ISO 9999:2022. Productos de apoyo. Clasificación y terminología. Madrid, España: FENIN, Tecnología Sanitaria; 2022.
  • Koh WQ, Hui Ang FX, Casey D. Impacts of low-cost robotic pets for older adults and people with dementia: scoping review. JMIR Rehabil Assist Technol. 2021;8(1):e25340. doi: 10.2196/25340.
  • Nasri N, López-Sastre RJ, Pacheco-da-Costa S, et al. Assistive robot with an AI-based application for the reinforcement of activities of daily living: technical validation with users affected by neurodevelopmental disorders. Appl Sci.2022;12(19):9566. doi: 10.3390/app12199566.
  • Rosenbaum P, Paneth N, Levinton A, et al. The definition and classification of cerebral palsy. Dev Med Child Neurol. 2007;49(s109):1–44.
  • Carvalho I, Pinto SM, Chagas D das V, et al. Robotic gait training for individuals with cerebral palsy: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2017;98(11):2332–2344. doi: 10.1016/j.apmr.2017.06.018.
  • Cooper S, Di Fava A, Villacanas O, et al. Social robotic application to support active and healthy ageing. 2021 30th IEEE International Conference of Robot Human Interaction Communication RO-MAN 2021; 2021 Aug 8. p. 1074–1080.
  • Kachouie R, Sedighadeli S, Khosla R, et al. Socially assistive robots in elderly care: a mixed-method systematic literature review. Int J Hum Comput Interact. 2014;30(5):369–393. doi: 10.1080/10447318.2013.873278.
  • Seino K. An exploratory literature review of robots and their interaction as assistive technology for persons with disabilities: focus on promoting activity and participation. LNCS. 2024;14522:323–344. Available from: https://link.springer.com/chapter/10<?sch-permit JATS-0034-007?>.1007/978-3-031-55245-8_21.
  • Scherer M, Jutai J, Fuhrer M, et al. A framework for modeling the selection of assistive technology devices (ATDs). Disabil Rehabil Assist Technol. 2007;2(1):1–8. doi: 10.1080/17483100600845414.
  • Pousada García T, Groba Gonzalez B, Nieto-Riveiro L, et al. Assessment and counseling to get the best efficiency and effectiveness of the assistive technology (MATCH): study protocol. PLOS One. 2022;17(3):e0265466. doi: 10.1371/journal.pone.0265466.
  • Hobart JC, Lamping DL, Freeman JA, et al. Evidence-based measurement: which disability scale for neurologic rehabilitation? Neurology. 2001;57(4):639–644. doi: 10.1212/wnl.57.4.639.
  • Lenker JA, Paquet VL. A review of conceptual models for assistive technology outcomes research and practice. Assist Technol. 2003;15(1):1–15. doi: 10.1080/10400435.2003.10131885.
  • Koumpouros Y, Papageorgiou E, Karavasili A, et al. A scale for assessing rehabilitation and assistive robotics. Int Sch Sci Res Innov. 2016;10(11):522–526.
  • López-Sastre RJ, Baptista-Ríos M, Acevedo-Rodríguez FJ, et al. A low-cost assistive robot for children with neurodevelopmental disorders to aid in daily living activities. IJERPH. 2021;18(8):3974. doi: 10.3390/ijerph18083974.
  • Thabane L, Ma J, Chu R, et al. A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol. 2010;10(1):1–10.
  • ASPACE Coruña. Asociación de padres de personas con parálisis cerebral de A Coriña [Internet]; 2022 [cited 2022 Dec 19]. Available from: https://www.aspacecoruna.org/.
  • Dodds TA, Martin DP, Stolov WC, et al. A validation of the functional independence measurement and its performance among rehabilitation inpatients. Arch Phys Med Rehabil. 1993;74(5):531–536. doi: 10.1016/0003-9993(93)90119-u.
  • Mylius C, Paap D, Takken T. Reference value for the 6-minute walk test in children and adolescents: a systematic review. Expert Rev Respir Med. 2016;10(12):1335–1352. doi: 10.1080/17476348.2016.1258305.
  • Peters D, Fritz S, Krotish D. Assessing the reliability and validity of a shorter walk test compared with the 10-meter walk test for measurements of gait speed in healthy, older adults. J Geriatr Phys Ther. 2013;36(1):24–30. doi: 10.1519/JPT.0b013e318248e20d.
  • Podsiadlo D, Richardson S. The timed "up & go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x.
  • Scherer MJ, Craddock G. Matching person & technology (MPT) assessment process. TAD. 2002;14(3):125–131. doi: 10.3233/TAD-2002-14308.
  • Assistant Secretary for Public Affairs. System Usability Scale (SUS); 2013 September 6 [cited 2019 Feb 25]. Available from: https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html.
  • Pousada García T, Garabal-Barbeira J, Porto Trillo P, et al. A framework for a new approach to empower users through low-cost and do-it-yourself assistive technology. Int J Environ Res Public Health. 2021;18(6):3039.doi: 10.3390/ijerph18063039.
  • Jutai J, Day H. Psychosocial impact of assistive devices scale (PIADS©. TAD. 2002;14(3):107–111. doi: 10.3233/TAD-2002-14305.
  • Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208. doi: 10.1016/j.jbi.2019.103208.
  • Llamas-Ramos R, Sánchez-González JL, Llamas-Ramos I. Robotic systems for the physiotherapy treatment of children with cerebral palsy: a systematic review. Int J Environ Res Public Health. 2022;19(9):5116. https://pubmed.ncbi.nlm.nih.gov/35564511/
  • Pool D, Valentine J, Taylor NF, et al. Locomotor and robotic assistive gait training for children with cerebral palsy. Dev Med Child Neurol. 2021;63(3):328–335. doi: 10.1111/dmcn.14746.
  • Wu M, Kim J, Gaebler-Spira DJ, et al. Robotic resistance treadmill training improves locomotor function in children with cerebral palsy: a randomized controlled pilot study. Arch Phys Med Rehabil. 2017;98(11):2126–2133. doi: 10.1016/j.apmr.2017.04.022.
  • Hidler J, Nichols D, Pelliccio M, et al. Advances in the understanding and treatment of stroke impairment using robotic devices. Top Stroke Rehabil. 2005;12(2):22–35. doi: 10.1310/RYT5-62N4-CTVX-8JTE.
  • da Silva Cameirão M, Bermúdez I Badia S, Duarte E, et al. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci. 2011;29(5):287–298. doi: 10.3233/RNN-2011-0599.
  • Miguel Cruz A, Ríos Rincón AM, Rodríguez Dueñas WR, et al. What does the literature say about using robots on children with disabilities? Disabil Rehabil Assist Technol. 12(5):429–440. doi: 10.1080/1748310720171318308.
  • Oladele DA, Markus ED, Abu-Mahfouz AM. Adaptability of assistive mobility devices and the role of the internet of medical things: comprehensive review. JMIR Rehabil Assist Technol. 2021;8(4):e29610. doi: 10.2196/29610.
  • Alazem H, McCormick A, Nicholls SG, et al. Development of a robotic walker for individuals with cerebral palsy. Disabil Rehabil Assist Technol. 2020;15(6):643–651. doi: 10.1080/17483107.2019.1604827.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.