85
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Usability of mechanical assistive technologies for performing activities involving the upper extremities in individuals with impairments: a systematic review

ORCID Icon, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Received 06 Oct 2022, Accepted 13 May 2024, Published online: 12 Jun 2024

References

  • Janssen MM, Bergsma A, Geurts AC, et al. Patterns of decline in upper limb function of boys and men with DMD: an international survey. J Neurol. 2014;261(7):1269–1288. doi: 10.1007/s00415-014-7316-9.
  • Zhuang J-Y, Ding L, Shu B-B, et al. Associated mirror therapy enhances motor recovery of the upper extremity and daily function after stroke: a randomized control study. Neural Plast. 2021;2021:7266263–7266269. doi: 10.1155/2021/7266263.
  • Raghavan P. Upper limb motor impairment after stroke. Phys Med Rehabil Clin. 2015;26(4):599–610.
  • Bartels B, Pangalila RF, Bergen MP, et al. Upper limb function in adults with duchenne muscular dystrophy. J Rehabil Med. 2011;43(9):770–775. doi: 10.2340/16501977-0841.
  • Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942–955. doi: 10.1016/S0140-6736(10)61156-7.
  • Koch BM, Simenson RL. Upper extremity strength and function in children with spinal muscular atrophy type II. Arch Phys Med Rehabil. 1992;73(3):241–245.
  • Kroksmark A-K, Beckung E, Tulinius M. Muscle strength and motor function in children and adolescents with spinal muscular atrophy II and III. Eur J Paediatr Neurol. 2001;5(5):191–198. doi: 10.1053/ejpn.2001.0510.
  • Mayer NH, Esquenazi A. Muscle overactivity and movement dysfunction in the upper motoneuron syndrome. Phys Med Rehabil Clin. 2003;14(4):855–883.
  • Thibaut A, Chatelle C, Ziegler E, et al. Spasticity after stroke: physiology, assessment and treatment. Brain Inj. 2013;27(10):1093–1105. doi: 10.3109/02699052.2013.804202.
  • Wissel J, Schelosky LD, Scott J, et al. Early development of spasticity following stroke: a prospective, observational trial. J Neurol. 2010;257(7):1067–1072. doi: 10.1007/s00415-010-5463-1.
  • Videler AJ, Beelen A, van Schaik IN, et al. Limited upper limb functioning has impact on restrictions in participation and autonomy of patients with hereditary motor and sensory neuropathy 1a. J Rehabil Med. 2009;41(9):746–750. no doi: 10.2340/16501977-0419.
  • van Meeteren J, Roebroeck M, Celen E, et al. Functional activities of the upper extremity of young adults with cerebral palsy: a limiting factor for participation? Disabil Rehabil. 2008;30(5):387–395. doi: 10.1080/09638280701355504.
  • Beaudoin M, Lettre J, Routhier F, et al. Long-term use of the JACO robotic arm: a case series. Disabil Rehabil Assist Technol. 2019;14(3):267–275. doi: 10.1080/17483107.2018.1428692.
  • Turgeon P, Dubé M, Laliberté T, et al. Mechanical design of a new device to assist eating in people with movement disorders. Assist Technol. 2022;34(2):170–177. doi: 10.1080/10400435.2020.1734111.
  • MacNeil M, Hirslund E, Baiocco-Romano L, et al. A scoping review of the use of intelligent assistive technologies in rehabilitation practice with older adults. Disabil Rehabil Assist Technol. 2023:1–32. doi: 10.1080/17483107.2023.2239277.
  • Gandolla M, Antonietti A, Longatelli V, et al. The effectiveness of wearable upper limb assistive devices in degenerative neuromuscular diseases: a systematic review and meta-analysis. Front Bioeng Biotechnol. 2019;7:450. doi: 10.3389/fbioe.2019.00450.
  • Karam A, Alnajjar F, Gochoo M. Assistive and rehabilitation robotics for upper limb impairments in post-stroke patients: evaluation criteria for the design and functionality. Advances in Science and Engineering Technology International Conferences (ASET), 2020: IEEE. p. 1–4.
  • van der Heide LA, Gelderblom GJ, de Witte LP. Effects and effectiveness of dynamic arm supports a technical review. Am J Phys Med Rehabil. 2015;94(1):44–62. doi: 10.1097/PHM.0000000000000107.
  • Readioff R, Siddiqui ZK, Stewart C, et al. Use and evaluation of assistive technologies for upper limb function in tetraplegia. J Spinal Cord Med. 2022;45(6):809–820. doi: 10.1080/10790268.2021.1878342.
  • van der Heide LA, Gelderblom GJ, de Witte LP. Dynamic arm supports: overview and categorization of dynamic arm supports for people with decreased arm function. IEEE 13th International Conference on Rehabilitation Robotics (ICORR), 2013: IEEE. p. 1–6.
  • Rozevink SG, Hijmans JM, Horstink KA, et al. Effectiveness of task-specific training using assistive devices and task-specific usual care on upper limb performance after stroke: a systematic review and meta-analysis. Disabil Rehabil Assist Technol. 2023;18(7):1245–1258. doi: 10.1080/17483107.2021.2001061.
  • Kmet LM, Cook LS, Lee RC. Standard quality assessment criteria for evaluating primary research papers from a variety of fields. 2004. Available from https://era.library.ualberta.ca/items/48b9b989-c221-4df6-9e35-af782082280e
  • Speyer R, Denman D, Wilkes-Gillan S, et al. Effects of telehealth by allied health professionals and nurses in rural and remote areas: a systematic review and meta-analysis. J Rehabil Med. 2018;50(3):225–235. doi: 10.2340/16501977-2297.
  • Rahman T, Sample W, Seliktar R, et al. Design and testing of a functional arm orthosis in patients with neuromuscular diseases. IEEE Trans Neural Syst Rehabil Eng. 2007;15(2):244–251. doi: 10.1109/TNSRE.2007.897026.
  • Gunn M, Shank TM, Eppes M, et al. User evaluation of a dynamic arm orthosis for people with neuromuscular disorders. IEEE Trans Neural Syst Rehabil Eng. 2015;24(12):1277–1283. doi: 10.1109/TNSRE.2015.2492860.
  • Shank T, Eppes M, Hossain J, et al. Outcome measures with COPM of children using a Wilmington robotic exoskeleton. Open J Occup Ther. 2017;5(1):3. doi: 10.15453/2168-6408.1262.
  • Haumont T, Rahman T, Sample W, et al. Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease. J Pediatr Orthop. 2011;31(5):e44–e49. doi: 10.1097/BPO.0b013e31821f50b5.
  • Atkins MS, Baumgarten JM, Yasuda YL, et al. Mobile arm supports: evidence-based benefits and criteria for use. J Spinal Cord Med. 2008;31(4):388–393. doi: 10.1080/10790268.2008.11760741.
  • Lebrasseur A, Lettre J, Routhier F, et al. Evaluation of the usability of an actively actuated arm support. Assist Technol. 2021;33(5):271–277. doi: 10.1080/10400435.2019.1629124.
  • Essers J, Murgia A, Peters A, et al. Daily life benefits and usage characteristics of dynamic arm supports in subjects with neuromuscular disorders. Sensors. 2020;20(17):4864. doi: 10.3390/s20174864.
  • Essers J, Meijer K, Peters A, et al. The effects of facioscapulohumeral dystrophy and dynamic arm support on upper extremity muscle coordination in functional tasks. Neuromuscul Disord. 2023;33(8):651–659. doi: 10.1016/j.nmd.2022.11.002.
  • Lund K, Brandt R, Gelderblom G-J, et al. A user-centered evaluation study of a mobile arm support. 2009 IEEE International Conference on Rehabilitation Robotics. IEEE; 2009. p. 582–587.
  • Mastenbroek B, de Haan E, van den Berg M, et al. Development of a mobile arm support (armon): design evolution and preliminary user experience. IEEE 10th International Conference on Rehabilitation Robotics. IEEE; 2007. p. 1114–1120.
  • Cruz A, Callaway L, Randall M, et al. Mobile arm supports in duchenne muscular dystrophy: a pilot study of user experience and outcomes. Disabil Rehabil Assist Technol. 2021;16(8):880–889. doi: 10.1080/17483107.2020.1749892.
  • Van Der Heide L, De Witte L. The perceived functional benefit of dynamic arm supports in daily life. J Rehabil Res Dev. 2016;53(6):1139–1150. doi: 10.1682/JRRD.2015.06.0099.
  • Kramer G, Romer GR, Stuyt HJ. Design of a dynamic arm support (D as) for gravity compensation. 2007 IEEE 10th International Conference on Rehabilitation Robotics. IEEE; 2007. p. 1042–1048. doi: 10.1109/ICORR.2007.4428552.
  • Bouffard J, Lettre J, Campeau-Lecours A, et al. Use of a dynamic arm support to drive a power wheelchair: a case report. Disabil Rehabil Assist Technol. 2022;19(2):506–515. doi: 10.1080/17483107.2022.2102258.
  • Kooren PN, Dunning AG, Janssen MMHP, et al. Design and pilot validation of A-gear: a novel wearable dynamic arm support (+ Erratum). J Neuroeng Rehabil. 2015;12:83.
  • Corrigan MC, Mathie B, Foulds RA. Translation of an upper extremity exoskeleton to home and community use for individuals with duchenne muscular dystrophy. 2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob): IEEE; 2017. p. 1–2.
  • Dieruf K, Ewer L, Boninger D. The natural-fit handrim: factors related to improvement in symptoms and function in wheelchair users. J Spinal Cord Med. 2008;31(5):578–585. doi: 10.1080/10790268.2008.11754605.
  • Sun J-X, Li L-F, Zhao Y-L, et al. CONSORT—assistive technology-180° rotating eating spoon improves the ability of eating of self-care patients with upper extremity dyskinesia: rotating eating spoon improves eating ability. Medicine. 2019;98(9):e14597. doi: 10.1097/MD.0000000000014597.
  • Shi JJ, Sun Y, Pan SS, et al. Manufacture and clinical application of the forearm pronation’s assistant tableware in the severely burned. Burns. 2021;47(3):684–691. doi: 10.1016/j.burns.2020.08.007.
  • Hayden RBE, Kontson K, Ong M, et al. Diabetes management for the disabled. Assistive device for patients with one functioning arm. RESNA; 2008.
  • Nijenhuis SM, Prange GB, Stienentt A, et al. Direct effect of a dynamic wrist and hand orthosis on reach and grasp kinematics in chronic stroke. IEEE international conference on rehabilitation robotics (ICORR). IEEE; 2015. p. 404–409.
  • Yeh P-C, Chen C-H, Chen C-S. Using a 3D-printed hand orthosis to improve three-jaw chuck hand function in individuals with cervical spinal cord injury: a feasibility study. IEEE Trans Neural Syst Rehabil Eng. 2023;31:2552–2559. doi: 10.1109/TNSRE.2023.3273300.
  • Villeneuve T, Lemire G, Paquet MP, et al. Handwriting assistive device: helping people living with motion disorders learn to write and learn. Presented at the RESNA; 2020.
  • Rostami S, Kim SH, Novoa E, et al. The assist handle: a device to conduct independent floor-to-wheelchair transfers. Presented at the RESNA. 2022. Available from https://www.resna.org/Events/RESNA-Conference.
  • Lim M, Park J, Lee KJ, et al. Usability of a new writing assistive device for persons with cervical spinal cord injury. Stud Health Technol Inform. 2015; 217:710–717.
  • Hyland M, Jang S-H, Shin A, et al. Enabling independence in reading with the manual page turning facilitative device. Proceedings of RESNA; 2010. p. 26–30.
  • Cohen P, Talag A, Uta S. RESNA annual conference-2012. 2012. Available from https://www.resna.org/sites/default/files/legacy/conference/proceedings/2012/Indexes/TitleIndex.html
  • Lin LY. Versita assistive drawing device: helping people living with motion disorders learn to write and draw. RESNA; 2021.
  • Gillman E, Gelle AM, Nguyen T. iDEA – iPad dexterity enhancement apparatus (Loyola Marymount University). Presented at the Rehabilitation Engineering and Assistive Technology Society of North America, Los Angeles; 2013.
  • Xiao B, D’Auria K. A locker assistant device. RESNA; 2009.
  • Nishinohira Y, Ikeda M, Oshima C, et al. F-ready: a support device that allows disabled people to play the guitar. IOP Conf. Ser. Mater. Sci. Eng. 2019;705(1):012006.Publishingdoi: 10.1088/1757-899X/705/1/012006.
  • Gherardini F, Petruccioli A, Dalpadulo E, et al. A methodological approach for the design of inclusive assistive devices by integrating co-design and additive manufacturing technologies. 3rd International Conference on Intelligent Human Systems Integration, IHSI 2020, February 19, 2020 - February 21, 2020, Modena, Italy, 2020, vol. 1131 AISC: Springer Science and Business Media Deutschland GmbH, in Advances in Intelligent Systems and Computing; p. 816–822. Available from doi: 10.1007/978-3-030-39512-4_124.
  • Carhart C, Ciechowski R, Groat D, et al. Development of a one-handed nail clipper for stroke survivors. Top Stroke Rehabil. 2008;15(2):156–159. doi: 10.1310/tsr1502-156.
  • Jensen EF, Raunsbæk J, Lund JN, et al. Development and simulation of a passive upper extremity orthosis for amyoplasia. J Rehabil Assist Technol Eng. 2018;5:2055668318761525. doi: 10.1177/2055668318761525.
  • Chan F, Gelman JS, Ditchman N, et al. The World Health Organization ICF model as a conceptual framework of disability. In: Chan F, Da Silva Cardoso E, Chronister J, editors. Understanding psychosocial adjustment to chronic illness and disability: a handbook for evidence-based practitioners in rehabilitation. Cham: Springer; 2009.
  • Hasegawa Y, Shimada S, Eguchi K. Development of wrist support mechanism for muscle weakness person to work on desk work. 2014 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE; 2014. p. 1–3. doi: 10.1109/MHS.2014.7006127.
  • Atigossou OLG, Honado AS, Routhier F, et al. Psychometric properties of the psychosocial impact of assistive devices scale (PIADS): a systematic review. Assistive Technol. 2021;35(3):211–219. doi: 10.1080/10400435.2021.2010149.
  • Aledda S, Galeoto G, Fabbrini G, et al. A systematic review of the psychometric properties of Quebec user evaluation of satisfaction with assistive technology (QUEST). Disabil Rehabil Assist Technol. 2023;19(4):1228–1235. doi: 10.1080/17483107.2022.2161648.
  • Lee WTK, Chan HF, Wong E. Improvement of feeding independence in end-stage cancer patients under palliative care - a prospective, uncontrolled study. Support Care Cancer. 2005;13(12):1051–1056. doi: 10.1007/s00520-005-0859-7.
  • Yasuda YL, Bowman K, Hsu JD. Mobile arm supports: criteria for successful use in muscle disease patients. Arch Phys Med Rehabil. 1986;67(4):253–256.
  • World Health Organization & United Nations Children’s Fund (UNICEF). Global report on assistive technology. 2022. Available from https://apps.who.int/iris/handle/10665/354357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.