371
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Strengthening crushed coarse aggregates using bio-grouting

ORCID Icon, &
Pages 59-70 | Received 19 Apr 2018, Accepted 04 Sep 2018, Published online: 27 Sep 2018

References

  • Al Qabany, A., Soga, K., and Santamarina, C., 2012. Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138 (8), 992–1001. doi:10.1061/(ASCE)GT.1943-5606.0000666
  • ASTM. 2006. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM standard D2487. West Conshohocken, Pa. American Society for Testing and Materials. doi:10.1520/D2487-11.
  • ASTM. 2014a. Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM standard D4253. West Conshohocken, PA. American Society for Testing and Materials. doi:10.1520/D4253-14.
  • ASTM. 2014b. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM standard D4254. West Conshohocken, PA. American Society for Testing and Materials.
  • Castanier, S., Le Métayer-Levrel, G., and Perthuisot, J.-P., 1999. Ca-carbonates precipitation and limestone genesis — the microbiogeologist point of view. Sedimentary Geology, 126 (1–4), 9–23. doi:10.1016/S0037-0738(99)00028-7
  • Cheng, L. and Cord-Ruwisch, R., 2012. In situ soil cementation with ureolytic bacteria by surface percolation. Ecological Engineering, 42, 64–72. doi:10.1016/j.ecoleng.2012.01.013
  • Chu, J., et al., 2013. Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotechnica, 9 (2), 277–285. doi:10.1007/s11440-013-0278-8
  • De Muynck, W., et al., 2007. Bacterial carbonate precipitation reduces the permeability of cementitious materials. In: Sustainable construction materials and technologies[online]. London: Taylor & Francis Group, 411–416. Available from:  http://hdl.handle.net/1854/LU-425173
  • De Muynck, W., et al., 2010. Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering, 36 (2), 99–111. doi:10.1016/j.ecoleng.2009.03.025
  • DeJong, J., et al., 2013. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Geotechnique, 63 (4), 287–301. doi:10.1680/geot.SIP13.P.017
  • DeJong, J.T., Fritzges, M.B., and Nüsslein, K., 2006. Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering, 132 (11), 1381–1392. doi:10.1061/(ASCE)1090-0241(2006)132:11(1381)
  • DeJong, J.T., et al., 2010. Bio-mediated soil improvement. Ecological Engineering, 36 (2), 197–210. doi:10.1016/j.ecoleng.2008.12.029
  • Dick, J., et al., 2006. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation, 17 (Montoya et al.), 357–367. doi:10.1007/s10532-005-9006-x
  • Faibish, R.S., Elimelech, M., and Cohen, Y., 1998. Effect of interparticle electrostatic double layer interactions on permeate flux decline in crossflow membrane filtration of colloidal suspensions: an experimental investigation. Journal of Colloid and Interface Science, 204 (1), 77–86. doi:10.1006/jcis.1998.5563
  • Foppen, J. and Schijven, J., 2006. Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions. Water Research, 40 (3), 401–426. doi:10.1016/j.watres.2005.11.018
  • Gniel, J. and Bouazza, A., 2009. Improvement of soft soils using geogrid encased stone columns. Geotextiles and Geomembranes, 27 (3), 167–175. doi:10.1016/j.geotexmem.2008.11.001
  • Gniel, J. and Bouazza, A., 2010. Construction of geogrid encased stone columns: A new proposal based on laboratory testing. Geotextiles and Geomembranes, 28 (1), 108–118. doi:10.1016/j.geotexmem.2009.12.012
  • Gollapudi, U., et al., 1995. A new method for controlling leaching through permeable channels. Chemosphere, 30 (Montoya et al.), 695–705. doi:10.1016/0045-6535(94)00435-W
  • Gomez, M.G., et al., 2014. Field-scale bio-cementation tests to improve sands. Proceedings of the Institution of Civil Engineers-Ground Improvement, 168 (3), 206–216. doi:10.1680/grim.13.00052
  • Hammes, F. and Verstraete, W., 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1 (1), 3–7. doi:10.1023/A:1015135629155
  • Harkes, M.P., et al., 2010. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36 (2), 112–117. doi:10.1016/j.ecoleng.2009.01.004
  • Hughes, J.M.O. and Withers, N.J., 1974. Reinforcing of soft cohesive soils with stone columns: 18F,9R. GROUND ENGNG.V7,N3,MAY,1974,P42–49. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 11 (11), A234. doi:10.1016/0148-9062(74)90643-3
  • Ivanov, V. and Chu, J., 2008. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Biotechnology, 7 (2), 139–153. doi:10.1007/s11157-007-9126-3
  • Karol, R.H., 2003. Chemical grouting and soil stabilization. New York: M Dekker.
  • Mahawish, A., Bouazza, A., and Gates, W.P., 2016. Biogrouting coarse materials using soil-lift treatment strategy. Canadian Geotechnical Journal, 53 (12), 2080–2085. doi:10.1139/cgj-2016-0167
  • Mahawish, A., Bouazza, A., and Gates, W.P., 2017. Effect of particle size distribution on the bio-cementation of coarse aggregates. Acta Geotech, 13 (4), 1019–1025. doi:10.1007/s11440-017-0604-7
  • Mahawish, A., Bouazza, A., and Gates, W.P. 2018a. Factors affecting the biocementing process of coarse sand. Ground Improvement. in press. doi:10.1680/grim.17.
  • Mahawish, A., Bouazza, A., and Gates, W.P., 2018b. Improvement of coarse sand engineering properties by microbially induced calcite precipitation. Geomicrobiology Journal, 1–11. doi:10.1080/01490451.2018.1488019
  • Martinez, B.C. and DeJong, J.T., 2009. Bio-mediated soil improvement: load transfer mechanisms at the micro-and macro-scales. In: Advances in Ground Improvement: Research to Practice in the United States and China. Orlando, FL: ASCE, 242–251.
  • Mitchell, J.K. 1981. Soil Improvement: state of the art report. 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, 4: 509–565.
  • Mitchell, J.M. and Jardine, F.M., 2002. A guide to ground treatment. London: CIRIA publication C573.
  • Montoya, B.M. 2012. Bio-mediated soil improvement and the effect of cementation on the behavior, improvement, and performance of sand. Thesis (PhD). Davis. Los Angeles, USA: University of California.
  • Mortensen, B. and DeJong, J. 2011. Strength and stiffness of MICP treated sand subjected to various stress paths. ASCE Proceedings of the Geo-Frontiers 2011 Conference, 13–16 March, Reston, VA: American Society of Civil Engineers. Dallas, TX| d 20110000.
  • Ramachandran, S.K., Ramakrishnan, V., and Bang, S.S., 2001. Remediation of concrete using micro-organisms. American Concrete Institute Material, 98 (1), 3–9.
  • Sarda, D., et al., 2009. Biocalcification by Bacillus pasteurii urease: a novel application. Journal of Industrial Microbiology & Biotechnology, 36 (8), 1111–1115. doi:10.1007/s10295-009-0581-4
  • Stabnikov, V., Ivanov, V., and Chu, J., 2015. Construction biotechnology: a new area of biotechnological research and applications. World Journal of Microbiology and Biotechnology, 31 (9), 1303–1314. doi:10.1007/s11274-015-1881-7
  • Van der Star, W., et al. 2011. Stabilization of gravel deposits using microorganisms. Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, 5–9 October, Athens, Greece: IOS Press.
  • Van Paassen, L.A. 2009. Biogrout, ground improvement by microbial induced carbonate precipitation, PhD Thesis, Delft University of Technology, Delft, Netherlands.
  • Weil, M.H., et al., 2012. Seismic and resistivity measurements for real-time monitoring of microbially induced calcite precipitation in sand. Geotechnical Testing Journal, 35 (2), 330–341.
  • Whiffin, V.S. 2004. Microbial CaCO3 precipitation for the production of biocement. Thesis (PhD). Perth, Australia: Murdoch University.
  • Whiffin, V.S., van Paassen, L.A., and Harkes, M.P., 2007. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24 (5), 417–423. doi:10.1080/01490450701436505

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.