399
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Predicting mechanical properties and ultimate shear strength of gypsum, limestone and sandstone rocks using Vipulanandan models

, &
Pages 90-106 | Received 26 Mar 2018, Accepted 11 Jun 2019, Published online: 27 Jun 2019

References

  • Akram, M.S., et al., 2017. Prediction of mechanical behaviour from mineralogical composition of Sakesar limestone, Central Salt Range, Pakistan. Bulletin of Engineering Geology and the Environment, 2 (76), 601–615. doi:10.1007/s10064-016-1002-3
  • Aoki, H. and Matsukura, Y., 2008. Estimating the unconfined compressive strength of intact rocks from Equotip hardness. Bulletin of Engineering Geology and the Environment, 67 (1), 23–29. doi:10.1007/s10064-007-0116-z
  • Başpınar, M.S. and Kahraman, E., 2011. Modifications in the properties of gypsum construction element via addition of expanded macroporous silica granules. Construction and Building Materials, 25 (8), 3327–3333. doi:10.1016/j.conbuildmat.2011.03.022
  • Bednarik, M., et al., 2014. Engineering geological properties of Leitha Limestone from historical quarries in Burgenland and Styria, Austria. Engineering Geology, 176, 66–78. doi:10.1016/j.enggeo.2014.04.005
  • Bell, F.G., 1981. Geotechnical properties of some evaporitic rocks. Bulletin 24 of the International Association of Engineering Geology, 137–144. doi:10.1007/BF02595264
  • Bucksch, H., 2013. Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik: Volume I: English German/Band I: Englisch·Deutsch. Springer-verlag; 9 Mar 2013.
  • Chen, J.F. (1990). The development of the cracked-chevron-notched Brazilian disc methods for rock fracture toughness measurement. In Proceeding of 1990 SEM Spring Conference on Experimental Mechanics (pp. 18–23). USA: Albuquerque.
  • Fjar, E., et al., 2008. Petroleum related rock mechanics (Vol. 53). Elsevier.
  • Guimin, Z., et al., 2012. Relationship between Shear stress and Shear strain at Post-Peak curves of rocks subjected to direct Shear tests. In: 46th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association. January.
  • Han, D.H., Nur, A., and Morgan, D., 1986. Effects of porosity and clay content on wave velocities in sandstones. Geophysics, 51 (11), 2093–2107. doi:10.1190/1.1442062
  • Heap, M.J. (2009). Creep: Time dependent brittle deformation in rocks (Doctoral dissertation, UCL (University College London)), London, England.
  • Heidari, M., et al., 2012. Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing. Rock Mechanics and Rock Engineering, 45 (2), 265–273. doi:10.1007/s00603-011-0196-8
  • Jin, Y., et al., 2011. Determination of rock fracture toughness K IIC and its relationship with tensile strength. Rock Mechanics and Rock Engineering, 44 (5), 621. doi:10.1007/s00603-011-0158-1
  • Johnson, K.S., 2005. Salt dissolution and subsidence or collapse caused by human activities. Reviews in Engineering Geology, 16, 101–110.
  • Kahraman, S., 2007. The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics, 46 (4), 341–348. doi:10.1016/j.ultras.2007.05.003
  • Karakus, M., Kumral, M., and Kilic, O., 2005. Predicting elastic properties of intact rocks from index tests using multiple regression modelling. International Journal of Rock Mechanics and Mining Sciences, 42 (2), 323–330. doi:10.1016/j.ijrmms.2004.08.005
  • Katz, O., Reches, Z., and Roegiers, J.C., 2000. Evaluation of mechanical rock properties using a Schmidt Hammer. International Journal of Rock Mechanics and Mining Sciences, 37 (4), 723–728. doi:10.1016/S1365-1609(00)00004-6
  • Klimchouk, A., 1996. The dissolution and conversion of gypsum and anhydrite. International Journal of Speleology, 25 (3–4), 21–36. doi:10.5038/1827-806X.25.3.2
  • Kurtuluş, C., Sertçelik, F., and Sertçelik, I., 2016. Correlating physico-mechanical properties of intact rocks with P-wave velocity. Acta Geodaetica Et Geophysica, 51 (3), 571–582. doi:10.1007/s40328-015-0145-1
  • Liang, W., et al., 2012. Experimental study of mechanical properties of gypsum soaked in brine. International Journal of Rock Mechanics and Mining Sciences, 53, 142–150. doi:10.1016/j.ijrmms.2012.05.015
  • Ludovico-Marques, M., Chastre, C., and Vasconcelos, G., 2012. Modelling the compressive mechanical behaviour of granite and sandstone historical building stones. Construction and Building Materials, 28 (1), 372–381. doi:10.1016/j.conbuildmat.2011.08.083
  • Meng, Z. and Pan, J., 2007. Correlation between petrographic characteristics and failure duration in clastic rocks. Engineering Geology, 89 (3), 258–265. doi:10.1016/j.enggeo.2006.10.010
  • Milliman, J.D., Müller, G., and Förstner, F., 2012. Recent sedimentary carbonates: part 1 marine carbonates. Springer Science and Business Media; 6 Dec 2012.
  • Mohammed, A., 2017b. Vipulanandan model for the rheological properties with ultimate shear stress of oil well cement modified with . doi:10.1016/j.ejpe.2017.05.007
  • Mohammed, A. and Mahmood, W., 2018a. Vipulanandan failure models to predict the tensile strength, compressive modulus, fracture toughness and ultimate shear strength of calcium rocks. International Journal of Geotechnical Engineering, 1–11. doi:10.1080/19386362.2018.1468663
  • Mohammed, A. and Mahmood, W., 2018b. Statistical variations and new correlation models to predict the mechanical behavior and ultimate shear strength of gypsum rock. Open Engineering, 8 (1), 213–226. doi:10.1515/eng-2018-0026
  • Mohammed, A. and Vipulanandan, C., 2015. Testing and modeling the short-term behavior of Lime and Fly Ash treated sulfate contaminated CL soil. Geotechnical and Geological Engineering, 33 (4), 1099–1114. doi:10.1007/s10706-015-9890-8
  • Mohammed, A.S., 2017. Effect of temperature on the rheological properties with shear stress limit of iron oxide nanoparticle modified bentonite drilling muds. Egyptian Journal of Petroleum, 26 (3), 791–802.
  • Mohammed, A.S., 2017a. Electrical resistivity and rheological properties of sensing bentonite-drilling muds modified with lightweight polymer. Egyptian Journal of Petroleum.
  • Mohammed, A.S., 2018. Property correlations and statistical variations in the geotechnical properties of (CH) clay soils. Geotechnical and Geological Engineering, 36 (1), 267–281.
  • Mohammed, A.S. and Vipulanandan, C., 2014. Compressive and tensile behavior of polymer treated sulfate contaminated CL soil. Geotechnical and Geological Engineering, 32 (1), 71–83. doi:10.1007/s10706-013-9692-9
  • Momeni, E., et al., 2015. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement, 60, 50–63. doi:10.1016/j.measurement.2014.09.075
  • Moos, D., et al., 2003. Comprehensive wellbore stability analysis utilizing quantitative risk assessment. Journal of Petroleum Science and Engineering, 38 (3), 97–109. doi:10.1016/S0920-4105(03)00024-X
  • Nam, M.S. and Vipulanandan, C., 2010. Relationship between Texas cone penetrometer tests and axial resistances of drilled shafts socketed in clay shale and limestone. Journal of Geotechnical and Geoenviromental Engineering, 136 (8), 1161–1165. doi:10.1061/(ASCE)GT.1943-5606.0000318
  • Okewale, I.A. and Olaleye, B.M., 2013. Correlation of Strength Properties of Limestone Deposit in Ogun State, Nigeria with Penetration Rate Using Linear Regression Analysis for Engineering Applications.
  • Omar, M., 2017. Empirical correlations for predicting strength properties of rocks–United Arab Emirates. International Journal of Geotechnical Engineering, 11 (3), 248–261. doi:10.1080/19386362.2016.1214339
  • Ozturk, C.A. and Nasuf, E., 2013. Strength classification of rock material based on textural properties. Tunnelling and Underground Space Technology, 37, 45–54. doi:10.1016/j.tust.2013.03.005
  • Papadopoulos, Z., Kolaiti, E., and Mourtzas, N., 1994. The effect of crystal size on geotechnical properties of Neogene gypsum in Crete. Quarterly Journal of Engineering Geology and Hydrogeology, 27 (3), 267–273. doi:10.1144/GSL.QJEGH.1994.027.P3.07
  • Parent, T., et al., 2015. Mechanical characterization of limestone from sound velocity measurement. International Journal of Rock Mechanics and Mining Sciences, 79, 149–156. doi:10.1016/j.ijrmms.2015.08.009
  • Pells, P.J.N., 2004. Substance and mass properties for the design of engineering structures in the Hawkesbury sandstone. Aust Geomech, 39 (3), 1–21.
  • Rahmouni, A., et al., 2013. Prediction of porosity and density of calcarenite rocks from P-wave velocity measurements. International Journal of Geosciences, 4 (09), 1292. doi:10.4236/ijg.2013.49124
  • Rajabzadeh, M.A., Moosavinasab, Z., and Rakhshandehroo, G., 2012. Effects of rock classes and porosity on the relation between uniaxial compressive strength and some rock properties for carbonate rocks. Rock Mechanics and Rock Engineering, 45 (1), 113–122. doi:10.1007/s00603-011-0169-y
  • Richard, T., et al., 2012. Rock strength determination from scratch tests. Engineering Geology, 147, 91–100. doi:10.1016/j.enggeo.2012.07.011
  • Sabatakakis, N., et al., 2008. Index properties and strength variation controlled by microstructure for sedimentary rocks. Engineering Geology, 97 (1), 80–90. doi:10.1016/j.enggeo.2007.12.004
  • Sachpazis, C.I., 1990. Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks. Bulletin of Engineering Geology and the Environment, 42 (1), 75–83.
  • Sarno, A., et al. (2009). Relationships between index and physical properties of weathered Ocala limestone. In: 43rd US Rock Mechanics Symposium & 4th US-Canada Rock Mechanics Symposium. American Rock Mechanics Association.
  • Schmidt, R.A., 1976. Fracture-toughness testing of limestone. Experimental Mechanics, 16 (5), 161–167. doi:10.1007/BF02327993
  • Selçuk, L. and Kayabali, K., 2015. Evaluation of the unconfined compressive strength of rocks using nail guns. Engineering Geology, 195, 164–171. doi:10.1016/j.enggeo.2015.06.014
  • Selçuk, L. and Nar, A., 2016. Prediction of uniaxial compressive strength of intact rocks using ultrasonic pulse velocity and rebound-hammer number. Quarterly Journal of Engineering Geology and Hydrogeology, 49 (1), 67–75. doi:10.1144/qjegh2014-094
  • Singh, M., et al., 2015. A nonlinear criterion for triaxial strength of inherently anisotropic rocks. Rock Mechanics and Rock Engineering, 48 (4), 1387–1405. doi:10.1007/s00603-015-0708-z
  • Singh, M.V., Chhabra, R., and Abrol, I.P., 1987. Interactions between applications of gypsum and zinc sulphate on the yield and chemical composition of rice grown on an alkali soil. The Journal of Agricultural Science, 108 (2), 275–279. doi:10.1017/S0021859600079260
  • Swapnil, K., Kim, M.-G., and Vipulanandan, C. (2004) Nondestructive properties of clay shale and limestone in Dallas, Texas. Proceeding (CD), ARA/NARMS 04-559, American Rock Mechanics Association, Houston, Texas, June 6, 2004.
  • Tugrul, A. and Zarif, I.H., 2000. Engineering aspects of limestone weathering in Istanbul, Turkey. Bulletin of Engineering Geology and the Environment, 58 (3), 191–206. doi:10.1007/s100640050075
  • Usluogullari, O.F. and Vipulanandan, C., 2011. Stress-strain behavior and California bearing ratio of artificially cemented sand. Journal of Testing and Evaluation, 39 (4), 1–9.
  • Vipulanandan, C. and Mohammed, A., 2015b. Effect of nanoclay on the electrical resistivity and rheological properties of smart and sensing bentonite drilling muds. Journal of Petroleum Science and Engineering, 130, 86–95. doi:10.1016/j.petrol.2015.03.020
  • Vipulanandan, C. and Mohammed, A., 2015c. XRD and TGA, swelling and compacted properties of polymer treated sulfate contaminated CL soil. Journal of Testing and Evaluation, 44 (6), 2270–2284.
  • Vipulanandan, C. and Mohammed, A., 2015d. Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications. Smart Materials and Structures, 24 (12), 125020. doi:10.1088/0964-1726/24/12/125020
  • Vipulanandan, C. and Mohammed, A., 2015e. Smart cement rheological and piezoresistive behavior for oil well applications. Journal of Petroleum Science and Engineering, 135, 50–58. doi:10.1016/j.petrol.2015.08.015
  • Vipulanandan, C. and Mohammed, A., 2017a. Rheological properties of piezoresistive smart cement slurry modified with iron-oxide nanoparticles for oil-well applications. Journal of Testing and Evaluation, 45, 6. doi:10.1520/JTE20150443
  • Vipulanandan, C. and Mohammed, A. New Vipulanandan failure model and property correlations for sandstone, shale and limestone rocks. In IFCEE 2018 (pp. 365–376).
  • Vipulanandan, C., Mohammed, A., and Samuel, R.G., 2017. Smart bentonite drilling muds modified with iron oxide nanoparticles and characterized based on the electrical resistivity and rheological properties with varying magnetic field strengths and temperatures. OTC-MS-270626.
  • Vipulanandan, C. and Mohammed, A.S., 2014. Hyperbolic rheological model with shear stress limit for acrylamide polymer modified bentonite-drilling muds. Journal of Petroleum Science and Engineering, 122, 38–47. doi:10.1016/j.petrol.2014.08.004
  • Vipulanandan, C. and Mohammed, A.S. (2015a). Characterizing the hydraulic fracturing fluid modified with nano silica proppant. AADE-15-NTCE-38, CD Proceeding, San Antonio, Texas, April 2015.
  • Vipulanandan, C. and Nam, E., 2009. Drilled shaft socketed in uncemented clay shale. In: Proceedings, foundation congress, USA, 151–158.
  • Yılmaz, N.G., Goktan, R.M., and Kibici, Y., 2011. An investigation of the petrographic and physico-mechanical properties of true granites influencing diamond tool wear performance, and development of a new wear index. Wear, 271 (5–6), 960–969. doi:10.1016/j.wear.2011.04.007
  • Yin, S., et al., 2017. Assessment of the geostress field of deep-thick gypsum cap rocks: A case study of Paleogene formation in the southwestern Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 154, 76–90. doi:10.1016/j.petrol.2017.04.021
  • Zhang, Z.X., 2002. An empirical relation between mode I fracture toughness and the tensile strength of rock. International Journal of Rock Mechanics and Mining Sciences, 39 (3), 401–406. doi:10.1016/S1365-1609(02)00032-1
  • Zoback, M.D., et al., 2003. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40 (7), 1049–1076. doi:10.1016/j.ijrmms.2003.07.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.