266
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Genesis of transitional behaviour in geomaterials: a review and gap analysis

ORCID Icon &
Pages 298-324 | Received 13 Nov 2018, Accepted 12 Sep 2019, Published online: 18 Oct 2019

References

  • Altuhafi, F., Baudet, B., and Sammonds, P., 2010. The mechanics of subglacial sediment: an example of new “transitional” behavior. Canadian Geotechnical Journal, 47, 775–790. doi:10.1139/T09-136
  • Altuhafi, F., Baudet, B., and Sammonds, P., 2011. On the particle size distribution of a basaltic till. Soils and Foundations, 51 (1), 113–121. doi:10.3208/sandf.51.113
  • Altuhafi, F. and Coop, M.R., 2011. Changes to particle characteristics associated with the compression of sands. Géotechnique, 61 (6), 459–471. doi:10.1680/geot.9.P.114
  • Altuhafi, F.N., Coop, M.R., and Georgiannou, V.N., 2016. Effect of particle shape on the mechanical behavior of natural sands. Journal of Geotechnical and Geoenvironmental Engineering, 142 (12), 04016071. doi:10.1061/(ASCE)GT.1943-5606.0001569
  • Anantanasakul, P., Yamamuro, J.A., and Kaliakin, V.N., 2012. Stress-strain and strength characteristics of silt-clay transition soils. Journal of Geotechnical and Geoenvironmental Engineering, 138 (10), 1257–1265. doi:10.1061/(ASCE)GT.1943-5606.0000692
  • Andersen, K.H. and Schjetne, K., 2013. Database of friction angles of sand and consolidation characteristics of sand, silt, and clay. Journal of Geotechnical and Geoenvironmental Engineering, 139 (7), 1140–1155. doi:10.1061/(ASCE)GT.1943-5606.0000839
  • Atkinson, J.H. and Bransby, P.L., 1978. The mechanics of soil: an introduction to critical state soil mechanics. Berks: McGraw Hill.
  • Attou, F., Bruand, A., and Lebissonnais, Y., 1998. Effect of clay content and silt-clay fabric on stability of artificial aggregates. European Journal of Soil Science, 49, 569–577. doi:10.1046/j.1365-2389.1998.4940569.x
  • Axelsson, K., Yu, Y., and Runesson, K., 1989. Constitutive properties and modeling of silty soils. In: Proceedings of 12th international conference on soil mechanics and foundation engineering. London: Taylor and Francis, Vol. 1, 687–690.
  • Bahadori, H., Ghalandarzadeh, A., and Towhata, I., 2008. Effect of non plastic silt on the anisotropic behavior of sand. Soils and Foundations, 48 (4), 531–545. doi:10.3208/sandf.48.531
  • Bayoumi, A. and Meguid, M.A., 2011. Wildlife and safety of earthen structures: a review. Journal of Failure Analysis and Prevention, 11 (4), 295–319. doi:10.1007/s11668-011-9439-y
  • Belkhatir, M., et al., 2011. Laboratory study on the liquefaction resistance of sand-silt mixtures: effect of grading characteristics. Granular Matter, 13 (5), 599–609. doi:10.1007/s10035-011-0269-0
  • Belkhatir, M., Schanz, T., and Arab, A., 2013. Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand–silt mixtures. Environmental Earth Sciences, 70, 2469–2479. doi:10.1007/s12665-013-2289-z
  • Benghalia, Y., et al., 2015. Liquefaction susceptibility study of sandy soils: effect of low plastic fines. Arabian Journal of Geosciences, 8 (2), 605–618. doi:10.1007/s12517-013-1255-0
  • Beroya, M.A.A., Aydin, A., and Katzenbach, R., 2009. Insight into the effects of clay mineralogy on the cyclic behavior of silt–clay mixtures. Engineering Geology, 106, 154–162. doi:10.1016/j.enggeo.2009.03.006
  • Boominathan, A., Rangaswamy, K., and Rajagopal, K., 2010. Effect of non-plastic fines on liquefaction resistance of Gujarat sand. International Journal of Geotechnical Engineering, 4, 241–253. doi:10.3328/IJGE.2010.04.02.241-253
  • Boulanger, R.W. and Idriss, I.M., 2004. Evaluating the potential for liquefaction or cyclicfailure of silts and clays. Report No. UCD/CGM-04/01, Center for GeotechnicalModelling, University of California at Davis.
  • Brandes, H.G., 1999. Mine burial due to wave-induced liquefaction and other processes. In: Proceedings of the 9th international offshore & polar engineering conference. France: Brest.
  • Brandon, T.L., Rose, A.T., and Duncan, J.M., 2006. Drained and undrained strength interpretation for low-plasticity silts. Journal of Geotechnical and Geoenvironmental Engineering, 132 (2), 250–257. doi:10.1061/(ASCE)1090-0241(2006)132:2(250)
  • Bressani, L.A., Martins, F.B., and Bica, A.V.D., 1994. Mechanical behavior of a residual soil from Botucatu sandstone. In: Proceedings of the 7th congress of the international association of engineering geology. Lisboa, Portugal, A.A. Balkema, Rotterdam, Vol. 1, 315–322
  • Carraro, J.A.H., Prezzi, M., and Salgado, R., 2009. Shear strength and stiffness of sands containing plastic or nonplastic fines. Journal of Geotechnical and Geoenvironmental Engineering, 135 (9), 1167–1178. doi:10.1061/(ASCE)1090-0241(2009)135:9(1167)
  • Casini, F., Jommi, C., and Springman, S., 2010. A laboratory investigation on an undisturbed silty sand from a slope prone to landsliding. Granular Matter, 12, 303–316. doi:10.1007/s10035-010-0182-y
  • Chang, C.S. and Meidani, M., 2012. Dominant grains network and behavior of sand–silt mixtures: stress–strain modeling. International Journal for Numerical and Analytical Methods in Geomechanics, 37 (15), 2563–2589. doi:10.1002/nag.2152
  • Chang, N.Y., Yeh, S.T., and Kaufman, L.P., 1982. Liquefaction potential of clean and silty sands. In: Proceedings of the 3rd International Conference on Earthquake Microzonation. Vol. 2, Seattle, WA, 1017–1032.
  • Chien, L.K., Oh, Y.N., and Chang, C.H., 2002. Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil. Canadian Geotechnical Journal, 39, 254–265. doi:10.1139/t01-083
  • Consiglio, R., et al., 2003. Continuum percolation thresholds for mixtures of spheres of different sizes. Physica A, 319, 49–55. doi:10.1016/S0378-4371(02)01501-7
  • Coop, M., 1990. The mechanics of uncemented carbonate sands. Géotechnique, 40 (4), 607–626. doi:10.1680/geot.1990.40.4.607
  • Coop, M., 2015. Limitations of a critical state framework applied to the behavior of natural and a “transitional” soils.” In: V.A. Rinaldi et al., ed. Deformation Characteristics of Geomaterials, 15–18 November 2015. Vol. 6, Buenos Aires, Argentina, 115–155.
  • Delage, P., et al., 1996. Microstructure of a compacted silt. Canadian Geotechnical Journal, 33 (1), 150–158. doi:10.1139/t96-030
  • Della, N., et al., 2010. Experimental study of the overconsolidation and saturation effects on the mechanical characteristics and residual strength of Chlef river sandy soil. Periodica Polytechnica Civil Engineering, 54 (2), 107–116. doi:10.3311/pp.ci.2010-2.06
  • Desai, C.S., 2016. Disturbed state concept as unified constitutive modeling approach. Journal of Rock Mechanics and Geotechnical Engineering, 8, 277–293. doi:10.1016/j.jrmge.2016.01.003
  • Desai, C.S. and Siriwardane, H.J., 1984. Constitutive laws for engineering materials with emphasis on geologic materials. Englewood Cliffs, NJ: Prentice-Hall, Inc., 468.
  • Efros, A.L., 1986. Physics and geometry of disorder. Moscow: Mir, 259.
  • Erten, D. and Maher, M.H., 1995. Cyclic undrained behavior of silty sand. Soil Dynamics and Earthquake Engineering, 14 (2), 115–123. doi:10.1016/0267-7261(94)00035-F
  • Fan, H. and Kong, L., 2013. Empirical equation for evaluating the dispersivity of cohesive soil. Canadian Geotechnical Journal, 50, 989–994. doi:10.1139/cgj-2012-0332
  • Ferreira, P.M.V. and Bica, A.V.D., 2006. Problems in identifying the effects of structure and critical state in a soil with a transitional behavior. Géotechnique, 56 (7), 445–454. doi:10.1680/geot.2006.56.7.445
  • Finn, W.L., Ledbetter, R.H., and Wu, G., 1994. Liquefaction in silty soils: design and analysis. In: Proceedings of the conference on ground failures under seismic conditions. GSP 44, Atlanta, GA, 51–76.
  • Fleming, L.N. and Duncan, J.M., 1990. Stress-deformation characteristics of an Alaskan silt. Journal of Geotechnical and Geoenvironmental Engineering, 116 (3), 377–393. doi:10.1061/(ASCE)0733-9410(1990)116:3(377)
  • Georgiannou, V.N., 2006. The undrained response of sands with additions of particles of various shapes and sizes. Géotechnique, 56 (9), 639–649. doi:10.1680/geot.2006.56.9.639
  • Grim, R.E., 1962. Applied clay mineralogy. New York: McGraw-Hill Book Company.
  • Guo, T. and Prakash, P., 1999. Liquefaction of silts and silt-clay mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 125 (8), 706–710. doi:10.1061/(ASCE)1090-0241(1999)125:8(706)
  • Gupta, A.K., 2009. Effect of particle size and confining pressure on breakage and strength parameters of rockfill materials. EJGE, 14, 1–12.
  • Hanumantha, C. and Ramana, G.V., 2011. Effect of non-plastic fines on liquefaction resistance and pore pressure behavior of fine sand. International Journal of Geotechnical Earthquake Engineering, 2 (2), 57–70. doi:10.4018/IJGEE
  • Hazirbaba, K. and Rathje, E.M., 2009. Pore pressure generation of silty sands due to induced cyclic shear strains. Journal of Geotechnical and Geoenvironmental Engineering, 135 (12), 1892–1905. doi:10.1061/(ASCE)GT.1943-5606.0000147
  • Hirai, H. and Hamazaki, T., 2004. Historical aspects of soil classification in Japan. Soil Science and Plant Nutrition, 50 (5), 611–622. doi:10.1080/00380768.2004.10408519
  • Hsiao, D.-H., et al., 2015. Engineering behavior and correlated parameters from obtained results of sand–silt mixtures. Soil Dynamics and Earthquake Engineering, 77, 137–151. doi:10.1016/j.soildyn.2015.05.005
  • Hsiao, D.H. and Phan, T.A.V., 2014. Effects of silt contents on the static and dynamic properties of sand-silt mixtures. Geomechanic and Engineering, 7 (3), 297–316. doi:10.12989/gae.2014.7.3.297
  • Huang, A.B., Hsu, H.H., and Chang, J.W., 1999. The behavior of a compressible silty fine sand. Canadian Geotechnical Journal, 36 (1), 88–101. doi:10.1139/t98-090
  • Ishihara, K., Sodekawa, M., and Tanaka, Y., 1978. Effects of overconsolidation on liquefaction characteristics of sands containing fines. In: M. Silver and D. Tiedemanned, ed. Dynamic geotechnical testing. West Conshohocken, PA: ASTM International.
  • Jeong, S.W., et al., 2010. Rheological properties of fine-grained sediment, the roles of texture and mineralogy. Canadian Geotechnical Journal, 47, 1085–1110. doi:10.1139/T10-012
  • Joseph, P.G., 2013. Physical basis and validation of a constitutive model for soil shear derived from microstructural changes. International Journal of Geomechanics, 13 (4), 365–383. doi:10.1061/(ASCE)GM.1943-5622.0000209
  • Karim, M.E. and Alam, M.J., 2014. Effect of non-plastic silt content on the liquefaction behavior of sand–silt mixture. Soil Dynamics and Earthquake Engineering, 65, 142–150. doi:10.1016/j.soildyn.2014.06.010
  • Karimian, A. and Hassanlourad, M., 2018. Undrained monotonic shear behaviour of loose sand-silt soil mixture. International Journal of Geotechnical Engineering, 1–11. doi:10.1080/19386362.2018.1541846
  • Koester, J.P. 1994. The influence of soil type and fine content on cyclic resistance. In: Proceedings of the conference on ground failures under seismic conditions.  GSP 44, Atlanta, GA, 17–33.
  • Konrad, J.M., 1998. Sand state from cone penetrometer tests: a framework considering grain crushing stress. Géotechnique, 48 (2), 201–215. doi:10.1680/geot.1998.48.2.201
  • Kuerbis, R., Negussey, D., and Vaid, Y.P., 1988. Effect of gradation and fines content on the undrained response of sand. In: D.J.A. Van Zyl and S.G. Vick, eds. Hydraulic fill structures. GSP 21. New York: American Society of Civil Engineers, 330–345.
  • Kwan, W.S. and Mohtar, C.E., 2018. A review on sand sample reconstitution methods and procedures for undrained simple shear test. International Journal of Geotechnical Engineering, 1–9. doi:10.1080/19386362.2018.1461988
  • Lab, H., 2017. Sujan Koirala at University of Tokyo. Available from: http://hydro.iis.u-tokyo.ac.jp/~sujan/research/gswp3/soil-texture-map.html [Accessed 6 June 2017].
  • Lade, P.V., Liggio, C.D., Jr., and Yamamuro, J.A., 1998. Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal, GTJODJ, 21 (4), 336–347. doi:10.1520/GTJ11373J
  • Lade, P.V. and Yamamuro, J.A., 1997. Effects of nonplastic fines on static liquefaction of sands. Canadian Geotechnical Journal, 34, 918–928. doi:10.1139/t97-052
  • Lade, P.V., Yamamuro, J.A., and Bopp, P.A., 1996. Significance of particle crushing in granular materials. Journal of Geotechnical and Geoenvironmental Engineering, 122 (4), 309–316. doi:10.1061/(ASCE)0733-9410(1996)122:4(309)
  • Lamotte, M., et al., 1997. A hard sandy-loam soil from Northern Cameroon. I. Fabric of the groundmass. European Journal of Soil Science, 48, 213–225. doi:10.1111/j.1365-2389.1997.tb00542.x
  • Lashkari, A., 2016. Prediction of flow liquefaction instability of clean and silty sands. Acta Geotechnica, 11, 987–1014. doi:10.1007/s11440-015-0413-9
  • Lau, W.H.W., 1988. Stress strain behavior of clays in simple shear and triaxial tests. Doctoral dissertation. London: The City University.
  • Law, K.T. and Ling, Y.H., 1992. Liquefaction of granular soils with non-cohesive and cohesive fines. In: Proceedings of the 10th world conference on earthquake engineering, rotterdam. Rotterdam, The Netherlands, 1491–1496.
  • Maheshwari, B.K. and Patel, A.K., 2010. Effects of non-plastic silts on liquefaction potential of Solani sand. Geotechnical and Geological Engineering, 28, 559–566. doi:10.1007/s10706-010-9310-z
  • Mahmoudi, Y., et al., 2016. Laboratory study on undrained shear behaviour of overconsolidated sand–silt mixtures: effect of the fines content and stress state. International Journal of Geotechnical Engineering, 12 (2), 118–132. doi:10.1080/19386362.2016.1252140
  • Mahmoudi, Y., et al., 2018. Influence of soil fabrics and stress state on the undrained instability of overconsolidated binary granular assemblies. Studia Geotechnica Et Mechanica, 40 (2), 96–116. doi:10.2478/sgem-2018-0011
  • Maleki, M., et al., 2011. Effect of physical parameters on static undrained resistance of sandy soil with low silt content. Soil Dynamics and Earthquake Engineering, 31 (10), 1324–1331. doi:10.1016/j.soildyn.2011.05.003
  • Martins, F.B., et al., 2001. Some aspects of the compressibility behavior of a clayey sand. Canadian Geotechnical Journal, 38, 1177–1186. doi:10.1139/t01-048
  • Monkul, M. and Yamamuro, J., 2011. Influence of silt size and content on liquefaction behavior of sands. Canadian Geotechnical Journal, 48 (6), 931–942. doi:10.1139/t11-001
  • Monkul, M.M., Etminan, E., and Şenol, A., 2016. Influence of coefficient of uniformity and base sand gradation on static liquefaction of loose sands with silt. Soil Dynamics and Earthquake Engineering, 89, 185–197. doi:10.1016/j.soildyn.2016.08.001
  • Mousa, A., 2015. The “gray zone”: fabric and consistency of natural transitional soils. Arabian Journal of Geosciences, 9, 39. doi:10.1007/s12517-015-2193-9
  • Murthy, T.G., et al., 2007. Undrained monotonic response of clean and silty sands. Géotechnique, 57 (3), 273–288. doi:10.1680/geot.2007.57.3.273
  • Ni, Q., et al., 2004. Contribution of fines to the compressive strength of mixed soils. Géotechnique, 54 (9), 561–569. doi:10.1680/geot.2004.54.9.561
  • Nocilla, A. and Coop, M.R., 2008. The behavior of sub-soils from the Po river embankments: an example of transitional behavior in natural soils. Rivista Italiana Di Geotecnica, 1, 49–58.
  • Nocilla, A., Coop, M.R., and Colleselli, F., 2006. The mechanics of an Italian silt: an example of ‘transitional’ behavior. Géotechnique, 56 (4), 261–271. doi:10.1680/geot.2006.56.4.261
  • Papadopoulou, A. and Tika, T., 2008. The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soils and Foundations, 48 (5), 713–725. doi:10.3208/sandf.48.713
  • Papadopoulou, A.I. and Tika, T.M., 2016. The effect of fines plasticity on monotonic undrained shear strength and liquefaction resistance of sands. Soil Dynamics and Earthquake Engineering, 88, 191–206. doi:10.1016/j.soildyn.2016.04.015
  • Park, J. and Santamarina, J.C., 2017. Revised soil classification system for coarse-fine mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 143 (8), 04017039. doi:10.1061/(ASCE)GT.1943-5606.0001705
  • Penman, A.D.M., 1953. Shear characteristics of a saturated silt, measured in triaxial compression. Géotechnique, 3, 312–328. doi:10.1680/geot.1953.3.8.312
  • Peters, J. and Berney, E., 2010. Percolation threshold of sand-clay binary mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 136 (2), 310–318. doi:10.1061/(ASCE)GT.1943-5606.0000211
  • Pitman, T.D., Robertson, P.K., and Sego, D.C., 1994. Influence of fines on the collapse of loose sands. Canadian Geotechnical Journal, 31 (5), 728–739. doi:10.1139/t94-084
  • Polidori, E., 2015. Proposal for a new classification of common inorganic soils for engineering purposes. Geotechnical and Geological Engineering, 33, 1569–1579. doi:10.1007/s10706-015-9922-4
  • Polito, C.P. and Martin, J.R., II., 2003. A reconciliation of the effects of non-plastic fines on the liquefaction resistance of sands reported in the literature. Earthquake Spectra, 19 (3), 635–651. doi:10.1193/1.1597878
  • Prakash, S. and Sandoval, J.A., 1992. Liquefaction of low plasticity silts. Soil Dynamics and Earthquake Engineering, 71 (7), 373–397. doi:10.1016/0267-7261(92)90001-T
  • Puri, V.K., 1984. Liquefaction behavior and dynamic properties of loessial (silty) soils. Doctoral dissertation. University of Missouri–Rollo. Mo.
  • Puri, V.K., 1990. Liquefaction aspects of loessial soils. In: Proceedings of the 4th U.S. Nat. conference on earthquake engineering, earthquake engineering research inst. El Cerito, California, Vol. 3, 755–762.
  • Pye, K. and Sperling, C.H.B., 1983. Experimental investigation of silt formation by static breakage processes: the effect of temperature, moisture and salt on quartz dune sand and granitic regolith. Sedimentology, 30, 49–62. doi:10.1111/sed.1983.30.issue-1
  • Rahman, M.M., Lo, S.R., and Gnanendran, C.T., 2008. On equivalent granular void ratio and steady state behaviour of loose sand with fines. Canadian Geotechnical Journal, 45 (10), 1439–1456. doi:10.1139/T08-064
  • Richardson, D., 1988. Investigations of threshold effects in soil deformation. Doctoral dissertation. London: The City University.
  • Robertson, P.K. and Campanella, R.G., 1985. Liquefaction potential of sands using the CPT. Journal of Geotechnical Engineering, 111 (3), 384–403. doi:10.1061/(ASCE)0733-9410(1985)111:3(384)
  • Rozenbaum, O., Braund, A., and Trong, E., 2012. Soil porosity resulting from the assemblage of silt grains with a clay phase: new perspectives related to utilization of X-ray synchrotron computed microtomography. Comptes Rendus Géoscience, 344, 516–525. doi:10.1016/j.crte.2012.09.004
  • Salgado, R., Bandini, P., and Karim, A., 2000. Shear strength and stiffness of silty sand. Journal of Geotechnical and Geoenvironmental Engineering, 126 (5), 451–462. doi:10.1061/(ASCE)1090-0241(2000)126:5(451)
  • Sandoval, J., 1989. Liquefaction and settlement characteristics of silt soils. Doctoral dissertation. University of Missouri–Rolla. Mo.
  • Seed, H.B., et al., 1985. Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, 111 (12), 1425–1445. doi:10.1061/(ASCE)0733-9410(1985)111:12(1425)
  • Seed, H.B., Idriss, I.M., and Arango, I., 1983. Evaluation of liquefaction potential using field performance data. Journal of Geotechnical Engineering, 109 (3), 458–482. doi:10.1061/(ASCE)0733-9410(1983)109:3(458)
  • Seed, R.B., et al., 2003. Recent advances in soilliquefaction: A unified and consistent framework. Report No. EERC 2003–06.Earthquake Engineering Research Center, University of California, Berkeley.
  • Shaolil, Y., Sandven, R., and Grande, L., 2002. Undrained behavior of silt under static and cyclic loading. Journal of Ocean University of Qingdao (oceanic and Coastal Sea Research), 1 (2), 176–182.
  • Shapiro, S., and Yamamuro, J.A., 2003. Effects of silt on three-dimensional stress–strain behavior of loose sand. Journal of Geotechnical and Geoenvironmental Engineering, 129 (1), 1–11.
  • Sharma, A., 2007. Geotechnical evaluation and numerical modeling of railway tracks on compacted subgrade. Doctoral dissertation. India: Indian Institute of Technology.
  • Shen, C.K., Vrymoed, J.L., and Uyeno, C.K., 1977. The effect of fines on liquefaction of sands. In: Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo. Tokyo, Japan: Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 2, 381–385.
  • Shipton, B., Coop, M.R., and Nocilla, A., 2006. Particle breakage in transitional soils. In: M. Hyodo., H. Murata, and Y. Nakata, eds. Proceedings of the International Symposium on Geomechanics and Geotechnics of Particulate Media. Taylor & Francis Ltd. Ube, Japan, 143–147. doi:10.1016/J.JHSB.2006.09.004
  • Shipton, B., 2010. The mechanics of transitional soils. Doctoral dissertation. London: Imperial College.
  • Shipton, B. and Coop, M.R., 2012. On the compression behavior of reconstituted soils. Soils and Foundations, 52 (4), 668–681. doi:10.1016/j.sandf.2012.07.008
  • Shipton, B. and Coop, M.R., 2015. Transitional behavior in sands with plastic and non-plastic fines. Soils and Foundations, 55 (1), 1–16. doi:10.1016/j.sandf.2014.12.001
  • Singh, S., 1994. Liquefaction characteristics of silt. In: Proceedings of the Conference on Ground Failures under Seismic Conditions, GSP 44, Atlanata, GA, 105–116.
  • Sitharam, T.G. and Dash, H.K., 2008. Effect of non-plastic fines on cyclic behavior of sandy soils. In: K.R. Reddy, M.V. Khire, and A.N. Alshawabkeh, eds. GeoCongress 2008: the challenge of sustainability in the geoenvironment, New Orleans, LA, 9–12 march 2008. Reston, Va.,: American Society of Civil Engineers, GSP 178, 319–326.
  • Sze, H.Y. and Yang, J., 2013. Failure modes of sand in undrained cyclic loading: impact of sample preparation. Journal of Geotechnical and Geoenvironmental Engineering, 140 (1), 152–169. doi:10.1061/(ASCE)GT.1943-5606.0000971
  • Taiba, A.C., et al., 2016. Insight into the effect of granulometric characteristics on the static liquefaction susceptibility of silty sand soils. Geotechnical and Geological Engineering, 34 (1), 367–382. doi:10.1007/s10706-015-9951-z
  • Taiba, A.C., et al., 2018. Experimental investigation into the influence of roundness and sphericity on the undrained shear response of silty sand soils. Geotechnical Testing Journal, 41 (3), 619–633.
  • Tatsuoka, F., et al., 1980. Standard penetration tests and soil liquefaction potential evaluation. Soils and Foundations, 20 (4), 95–111. doi:10.3208/sandf1972.20.4_95
  • Tatsuoka, F., Sakamoto, M., and Fukushima, S., 1986. Strength and deformation characteristics of sand in plane strain compression at extremely low pressures. Soils and Foundations, 26 (1), 65–85. doi:10.3208/sandf1972.26.65
  • Terzaghi, K., 1956. Varieties of submarine slope failures. In: Proceedings, 8th Texas conference on soil mechanics and foundation engineering. Austin, TX, USA: University of Texas.
  • Thevanayagam, S., 1998. Effect of fines and confining stress on undrained shear strength of silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 124 (6), 479–491. doi:10.1061/(ASCE)1090-0241(1998)124:6(479)
  • Thevanayagam, S., et al., 2002. Undrained fragility of clean sands, silty sands and sandy silts. Journal of Geotechnical and Geoenvironmental Engineering, 128 (10), 849–859. doi:10.1061/(ASCE)1090-0241(2002)128:10(849)
  • Thevanayagam, S. and Mohan, S., 2000. Intergranular state variables and stress-strain behavior of silty sands. Géotechnique, 50 (1), 1–23. doi:10.1680/geot.2000.50.1.1
  • Tint, K.S., Lee, S.R., and Kim, Y.S., 2009. Comparison between shear behaviors of overconsolidated Nakdong river sandy silt and silty sand. Marine Georesources and Geotechnology, 27, 217–229. doi:10.1080/10641190902967101
  • Tokimatsu, K. and Yoshimi, Y., 1983. Empirical correlation of soil liquefaction based on SPT N value and fines content. Soil and Foundation, 23 (4), 56–74. doi:10.3208/sandf1972.23.4_56
  • Troncoso, J.H., 1990. Failure risks of abandoned tailing dams. In: Proceedings of the International Symposium on Safety and Rehabilitation of Tailings Dams. Sydney, Australia, 34–47.
  • Troncoso, J.H. and Verdugo, R., 1985. Silt content and dynamic behavior of tailing sands. In: Proceedings of the 12th international conference on soil mechanics and foundations engineering. San Francisco, 1311–1314.
  • Tsuchida, H., 1970. Prediction and countermeasure against the liquefaction in sand deposits. In: Proceedings of the seminar of the port and harbour research institute, ministry of transport. Yokosuka, Japan, Vol. 3, 1–3. doi:10.1159/000136056
  • Ueng, T.S., Sun, C.W., and Chen, C.-W., 2004. Definition of fines and liquefaction resistance of Maoluo river soil. Soil Dynamics and Earthquake Engineering, 24, 745–750. doi:10.1016/j.soildyn.2004.06.011
  • Usmani, A., Ramana, G.V., and Sharma, K.G., 2011. Experimental evaluation of shear-strength behavior of Delhi silt under static loading conditions. Journal of Materials in Civil Engineering, 23 (5), 533–541. doi:10.1061/(ASCE)MT.1943-5533.0000203
  • Vaid, Y.P., 1994. Liquefaction of silty soils. In: Proceedings of the conference on ground failures under seismic conditions, GSP 44, Atlanata, GA, 1–16.
  • Ventouras, K., 2009. Engineering behavior of Thanet sand. Doctoral dissertation. London: Imperial College.
  • Ventouras, K. and Coop, M.R., 2009. On the behavior of Thanet sand: an example of an uncemented natural sand. Géotechnique, 59 (9), 727–738. doi:10.1680/geot.7.00061
  • Vesic, A.S., and Clough, G.W., 1968. Behavior of granular materials under high stresses. Journal of Soil Mechanics & Foundations Div.
  • Vilhar, G., Jovicic, V., and Coop, M.R., 2013. The role of particle breakage in the mechanics of a non-plastic silty sand. Soils and Foundations, 53 (1), 91–104. doi:10.1016/j.sandf.2012.12.006
  • Wang, J.L. and Vivatrat, V., 1982. Geotechnical properties of Alaska OCS silts. In: Proceedings of the 14th annual offshore technology conference. Houston, Texas. OTC 4412, 415–420.
  • Wang, S., Lu, X., and Shi, Z., 2010. The effects of grain size distribution and structure on mechanical behavior of silty sand. The Open Ocean Engineering Journal, 3, 82–85.
  • Whittle, A.J. and DeGroot, D.J., 1994. Model prediction of anisotropic behavior of Boston blue clay. Journal of Geotechnical Engineering, ASCE, 120 (1), 199–224. doi:10.1061/(ASCE)0733-9410(1994)120:1(199)
  • Wood, F.M., 1999. Influence of specimen reconstitution method on the undrained response and microstructure of silty sand. MSc dissertation, Rep. No. 99–11. Potsdam, N.Y: Clarkson Univ.
  • Xenaki, V.C. and Athanasopoulos, G.A., 2003. Discussion of “Effects of non plastic fines on the liquefaction resistance of sands” by Carmine P. Polito and James R. Martin II. Journal of Geotechnical and Geoenvironmental Engineering, 129 (4), 387–389. doi:10.1061/(ASCE)1090-0241(2003)129:4(387)
  • Xiao, Y., et al., 2016. Transitional behaviors in well-graded coarse granular soils. Journal of Geotechnical and Geoenvironmental Engineering, 142 (12), 06016018. doi:10.1061/(ASCE)GT.1943-5606.0001551
  • Xu, L. and Coop, M.R., 2016. Influence of structure on the behavior of a saturated clayey loess. Canadian Geotechnical Journal, 53, 1026–1037. doi:10.1139/cgj-2015-0200
  • Yamamuro, J. and Wood, F.M., 2004. Effect of depositional method on the undrained behavior and microstructure of sand with silt. Soil Dynamics and Earthquake Engineering, 24 (9–10), 751–760. doi:10.1016/j.soildyn.2004.06.004
  • Yamamuro, J., Wood, F.M., and Lade, P.V., 2008. Effect of depositional method on the microstructure of silty sand. Canadian Geotechnical Journal, 45 (11), 1538–1555. doi:10.1139/T08-080
  • Yamamuro, J.A. and Covert, K.M., 2001. Monotonic and cyclic liquefaction of very loose sands with high silt content. Journal of Geotechnical and Geoenvironmental Engineering, 127 (4), 314–324. doi:10.1061/(ASCE)1090-0241(2001)127:4(314)
  • Yamamuro, J.A. and Lade, P.V., 1997. Static liquefaction of very loose sands. Canadian Geotechnical Journal, 34, 905–917. doi:10.1139/t97-057
  • Yang, J. and Wei, L.M., 2012. Collapse of loose sand with the addition of fines: the role of particle shape. Geotechnique, 62 (12), 1111–1125. doi:10.1680/geot.11.P.062
  • Yang, J. and Wei, L.M., 2014, May. Static liquefaction of granular soils: the role of grain shape and size. In: Chau KT., Zhao J, ed. International workshop on bifurcation and degradation in geomaterials, Cham: Springer, 199–205.
  • Yilmaz, Y., et al., 2008. Experimental investigation of the effect of grading characteristics on the liquefaction resistance of various graded sands. Engineering Geology, 100 (3–4), 91–100. doi:10.1016/j.enggeo.2007.12.002
  • Yu, H.S., 1998. CASM: A unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics, 22 (8), 621–653. doi:10.1002/(ISSN)1096-9853
  • Yu, Y., 1993. Testing and modelling of silty and sulphide-rich soils. Doctoral dissertation. Lulea University of Technology.
  • Zlatovic, S. and Ishihara, K., 1995. On the influence of non-plastic fines on residual strength. In: Proceedings of IS-Tokyo ’95, first international conference on earthquake geotechnical engineering. Vol. 1, Tokyo, Japan, 239–244.
  • Zuo, L. and Baudet, B.A., 2015. Determination of the transitional fines content of sand-non plastic fines mixtures. Soils and Foundations, 55 (1), 213–219. doi:10.1016/j.sandf.2014.12.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.