209
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Pseudo-static internal stability analysis of geosynthetic-reinforced earth slopes using horizontal slices method

, , ORCID Icon & ORCID Icon
Pages 1417-1442 | Received 03 Feb 2021, Accepted 04 Jun 2021, Published online: 19 Jul 2021

References

  • Abd, A.H. and Utili, S., 2017. Design of geosynthetic-reinforced slopes in cohesive backfills. Geotextiles and Geomembranes, 45 (6), 627–641. doi:10.1016/j.geotexmem.2017.08.004.
  • Ausilio, E., Conte, E., and Dente, G., 2000. Seismic stability analysis of reinforced slopes. Soil Dynamics and Earthquake Engineering, 19 (3), 159–172. doi:10.1016/S0267-7261(00)00005-1.
  • Chanda, N., Ghosh, S., and Pal, M., 2018. Analysis of slope using modified pseudo-dynamic method. International Journal of Geotechnical Engineering, 12 (4), 337–346. doi:10.1080/19386362.2016.1277848.
  • Chandaluri, V.K., Sawant, V.A., and Shukla, S.K., 2015. Seismic stability analysis of reinforced soil wall using horizontal slice method. International Journal of Geosynthetics and Ground Engineering, 1 (3), 23. doi:10.1007/s40891-015-0025-3.
  • Chen, J., Yin, J.H., and Lee, C.F., 2003. Upper bound limit analysis of slope stability using rigid finite elements and nonlinear programming. Canadian Geotechnical Journal, 40 (4), 742–752. doi:10.1139/t03-032.
  • Deng, D.P., Li, L., and Zhao, L.H., 2019. Stability analysis of slopes reinforced with anchor cables and optimal design of anchor cable parameters. European Journal of Environmental and Civil Engineering, 1–16. doi:10.1080/19648189.2019.1631216.
  • Dong-ping, D., Liang, L., and Lian-heng, Z., 2017. Limit-equilibrium method for reinforced slope stability and optimum design of antislide micropile parameters. International Journal of Geomechanics, 17 (2), 06016019. doi:10.1061/(ASCE)GM.1943-5622.0000722.
  • Fakher, A., Nouri, H., and Shahgholi, M. 2002 Limit equilibrium in reinforced soil walls subjected to seismic loads. In: Proceedings of the Third Iranian International Conference on Geotechnical Engineering and Soil Mechanics, Tehran, 3.
  • Farshidfar, N., Keshavarz, A., and Mirhosseini, S.M., 2020. Pseudo-static seismic analysis of reinforced soil slopes using the horizontal slice method. Arabian Journal of Geosciences, 13 (7), 1–14. doi:10.1007/s12517-020-5269-0.
  • Fathipour, H., et al., 2020. Evaluation of the lateral earth pressure in unsaturated soils with finite element limit analysis using second-order cone programming. Computers and Geotechnics, 125, 103587. doi:10.1016/j.compgeo.2020.103587.
  • Fathipour, H., et al., 2021b. Limit analysis of modified pseudodynamic lateral earth pressure in anisotropic frictional medium using finite-element and second-order cone programming. International Journal of Geomechanics, 21 (2), 04020258. doi:10.1061/(ASCE)GM.1943-5622.0001924.
  • Fathipour, H., Payan, M., and Jamshidi Chenari, R., 2021a. Limit analysis of lateral earth pressure on geosynthetic-reinforced retaining structures using finite element and second-order cone programming. Computers and Geotechnics, 134, 104119. doi:10.1016/j.compgeo.2021.104119.
  • Ghanbari, A. and Ahmadabadi, M., 2010. New analytical procedure for seismic analysis of reinforced retaining wall with cohesive-frictional backfill. Geosynthetics International, 17 (6), 364–379. doi:10.1680/gein.2010.17.6.364.
  • He, H., Payan, M., and Senetakis, K., 2021. The behaviour of a recycled road base aggregate and quartz sand with bender/extender element tests under variable stress states. European Journal of Environmental and Civil Engineering, 25 (1), 152–169. doi:10.1080/19648189.2018.1521749.
  • Javankhoshdel, S. and Bathurst, R.J., 2017. Deterministic and probabilistic failure analysis of simple geosynthetic reinforced soil slopes. Geosynthetics International, 24 (1), 14–29. doi:10.1680/jgein.16.00012.
  • Keshavarz, A., Abbasi, H., and Fazeli, A., 2017. Yield acceleration of reinforced soil slopes. International Journal of Geotechnical Engineering, 14 (1), 80–89. doi:10.1080/19386362.2017.1404736.
  • Khosravizadeh, M., Dehestani, M., and Kalantary, F., 2016. On the seismic stability and critical slip surface of reinforced slopes. Soil Dynamics and Earthquake Engineering, 85, 179–190. doi:10.1016/j.soildyn.2016.03.018.
  • Koseki, J., et al. 2006. Seismic stability of reinforced soil walls. In: Proc. of 8th International Conference on Geosynthetics, vol. 1, Yokohama, Japan, 18–22 September 2006, 51–77.
  • Kramer, S.L., 1996. Geotechnical Earthquake Engineering. Englewood Cliffs, NJ: Prentice Hall.
  • Kramer, S.L. and Paulsen, S.B., 2004. Seismic performance evaluation of reinforced slopes. Geosynthetics International, 11 (6), 429–438. doi:10.1680/gein.2004.11.6.429.
  • Li, Z.W., Yang, X.L., and Li, T.Z., 2020. Static and seismic stability assessment of 3D slopes with cracks. Engineering Geology, 26, 105450. doi:10.1016/j.enggeo.2019.105450.
  • Ling, H.I. and Leshchinsky, D., 1998. Effects of vertical acceleration on seismic design of geosynthetic-reinforced soil structures. Geotechnique, 48 (3), 347–373. doi:10.1680/geot.1998.48.3.347.
  • Ling, H.I., Leshchinsky, D., and Perry, E.B., 1997. Seismic design and performance of geosynthetic-reinforced soil structures. Geotechnique, 47 (5), 933–952. doi:10.1680/geot.1997.47.5.933.
  • Lo, S.R. and Xu, D.W., 1992. A strain-based design method for the collapse limit state of reinforced soil walls or slopes. Canadian Geotechnical Journal, 29 (5), 832–842. doi:10.1139/t92-090.
  • Michalowski, R.L., 1998. Soil reinforcement for seismic design of geotechnical structures. Computers and Geotechnics, 23 (1–2), 1–17. doi:10.1016/S0266-352X(98)00016-0.
  • Mononobe, N. and Matsuo, H. 1929. On the determination of earth pressure during earthquakes: Proceedings of the World Engineering Congress.
  • Morgenstern, N.U. and Price, V.E., 1965. The analysis of the stability of general slip surfaces. Geotechnique, 15 (1), 79–93. doi:10.1680/geot.1965.15.1.79.
  • Nouri, H., Fakher, A., and Jones, C.J.F.P., 2006. Development of horizontal slice method for seismic stability analysis of reinforced slopes and walls. Geotextiles and Geomembranes, 24 (3), 175–187. doi:10.1016/j.geotexmem.2005.11.004.
  • Nouri, H., Fakher, A., and Jones, C.J.F.P., 2008. Evaluating the effects of the magnitude and amplification of pseudo-static acceleration on reinforced soil slopes and walls using the limit equilibrium horizontal slices method. Geotextiles and Geomembranes, 26 (3), 263–278. doi:10.1016/j.geotexmem.2007.09.002.
  • Nouzari, M.A., et al., 2021. Pseudo-static seismic bearing capacity of shallow foundations in unsaturated soils employing limit equilibrium method. Geotechnical and Geological Engineering, 39 (2), 943–956. doi:10.1007/s10706-020-01535-8.
  • Okabe, S., 1924. General theory of earth pressure and seismic stability of retaining wall and dam. Proceedings of the Japan Society of Civil Engineers, 10 (6), 1277–1323.
  • Pain, A., Choudhury, D. and Bhattacharyya, S.K., 2016. Seismic uplift capacity of horizontal strip anchors using a modified pseudodynamic approach. International Journal of Geomechanics, 16(1), 04015025.
  • Payan, M., et al., 2016a. Effect of particle shape and validity of Gmax models for sand: a critical review and a new expression. Computers and Geotechnics, 72, 28–41. doi:10.1016/j.compgeo.2015.11.003.
  • Payan, M., et al., 2016b. Small-strain stiffness of sand subjected to stress anisotropy. Soil Dynamics and Earthquake Engineering, 88, 143–151. doi:10.1016/j.soildyn.2016.06.004.
  • Payan, M., et al., 2016c. Influence of particle shape on small-strain damping ratio of dry sands. Géotechnique, 66 (7), 610–616. doi:10.1680/jgeot.15.T.035.
  • Payan, M., et al., 2017a. Characterization of the small-strain dynamic behaviour of silty sands; contribution of silica non-plastic fines content. Soil Dynamics and Earthquake Engineering, 102, 232–240. doi:10.1016/j.soildyn.2017.08.008.
  • Payan, M., et al., 2017b. Effect of gradation and particle shape on small-strain Young’s modulus and Poisson’s ratio of sands. International Journal of Geomechanics, 17 (5), 04016120. doi:10.1061/(ASCE)GM.1943-5622.0000811.
  • Payan, M. and Jamshidi Chenari, R., 2019. Small strain shear modulus of anisotropically loaded sands. Soil Dynamics and Earthquake Engineering, 125, 105726. doi:10.1016/j.soildyn.2019.105726.
  • Payan, M., Khoshini, M., and Jamshidi Chenari, R., 2020. Elastic dynamic Young’s modulus and poisson’s ratio of sand–Silt mixtures. Journal of Materials in Civil Engineering, 32 (1), 04019314. doi:10.1061/(ASCE)MT.1943-5533.0002991.
  • Payan, M. and Senetakis, K., 2019. Effect of anisotropic stress state on elastic shear stiffness of sand–silt mixture. Geotechnical and Geological Engineering, 37 (3), 2237–2244. doi:10.1007/s10706-018-0690-9.
  • Qin, C. and Chian, S.C., 2018b. Seismic bearing capacity of non-uniform soil slopes using discretization-based kinematic analysis considering Rayleigh waves. Soil Dynamics and Earthquake Engineering, 109, 23–32. doi:10.1016/j.soildyn.2018.02.017.
  • Qin, C., Chian, S.C., and Du, S., 2020. Revisiting seismic slope stability: intermediate or below-the-toe failure? Géotechnique, 70 (1), 71–79. doi:10.1680/jgeot.18.T.001.
  • Qin, C.B. and Chian, S.C., 2018a. Kinematic analysis of seismic slope stability with a discretisation technique and pseudo-dynamic approach: a new perspective. Géotechnique, 68 (6), 492–503. doi:10.1680/jgeot.16.P.200.
  • Rao, P., et al., 2019. Three-dimensional limit analysis of slopes reinforced with piles in soils exhibiting heterogeneity and anisotropy in cohesion. Soil Dynamics and Earthquake Engineering, 121, 194–199. doi:10.1016/j.soildyn.2019.02.030
  • Rocscience Inc, 2019. RS2 Version 2019 – 2D Finite Element Analysis. Toronto, Ontario: Canada. Available from www.rocscience.com
  • Safardoost Siahmazgi, A., et al., 2021. Evaluation of the pseudo-dynamic bearing capacity of surface footings on cohesionless soils using finite element lower bound limit analysis. Geomechanics and Geoengineering, 1–13. doi:10.1080/17486025.2021.1889686.
  • Saha, A. and Ghosh, S., 2015. Pseudo-dynamic bearing capacity of shallow strip footing resting on c-Φ soil considering composite failure surface: bearing capacity analysis using pseudo-dynamic method. International Journal of Geotechnical Earthquake Engineering (IJGEE), 6(2), 12–34.
  • Sandri, D., 1997. A performance summary of reinforced soil structures in the greater Los Angeles area after the Northridge earthquake. Geotextiles and Geomembranes, 15 (4–6), 235–253. doi:10.1016/S0266-1144(97)10006-1.
  • Senetakis, K. and Payan, M., 2018. Small strain damping r atio of sands and silty sands subjected to flexural and torsional resonant column excitation. Soil Dynamics and Earthquake Engineering, 114, 448–459. doi:10.1016/j.soildyn.2018.06.010.
  • Shahgholi, M., Fakher, A., and Jones, C.J.F.P., 2001. Horizontal slice method of analysis. Geotechnique, 51 (10), 881–885. doi:10.1680/geot.2001.51.10.881.
  • Yazdandoust, M. and Ghalandarzadeh, A., 2020. Pseudo-static coefficient in reinforced soil structures. International Journal of Physical Modelling in Geotechnics, 20 (6), 320–337.
  • Zamanian, M., Mollaei-Alamouti, V., and Payan, M., 2020. Directional strength and stiffness characteristics of inherently anisotropic sand: the influence of deposition inclination. Soil Dynamics and Earthquake Engineering, 137, 106304. doi:10.1016/j.soildyn.2020.106304
  • Zamanian, M., et al. 2021. EEvolution of Dynamic Properties of Cross-Anisotropic Sand Subjected to Stress Anisotropy. Journal of Geotechnical and Geoenvironmental Engineering, 147(7), p.04021048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.