193
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of fibre type and content on unconfined compressive strength of fibre-reinforced lime or cement-stabilised soils

ORCID Icon & ORCID Icon
Pages 1962-1972 | Received 03 Aug 2020, Accepted 18 Sep 2021, Published online: 30 Sep 2021

References

  • Abdullah, G.M.S. and Al-Abdul Wahhab, H.I., 2015. Evaluation of foamed sulfur asphalt stabilized soils for road applications. Construction and Building Materials, 88, 149–158. Elsevier Ltd. doi:10.1016/j.conbuildmat.2015.04.013
  • Al-Rawas, A.A., Hago, A.W., and Al-Sarmi, H., 2005. Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman. Building and Environment, 40 (5), 681–687. doi:10.1016/j.buildenv.2004.08.028
  • Andavan, S. and Pagadala, V.K., 2020. A study on soil stabilization by addition of fly ash and lime. Materials Today: Proceedings, 22, 1125–1129. Elsevier Ltd. doi:10.1016/j.matpr.2019.11.323
  • Arabani, M. and Haghsheno, H., 2020. The effect of polymeric fibers on the mechanical properties of cement-stabilized clay soils in Northern Iran. International Journal of Geotechnical Engineering, 14 (5), 557–568. Taylor & Francis. doi:10.1080/19386362.2019.1658057
  • Asgari, M.R., Baghebanzadeh Dezfuli, A., and Bayat, M., 2015. Experimental study on stabilization of a low plasticity clayey soil with cement/lime. Arabian Journal of Geosciences, 8 (3), 1439–1452. Springer Verlag. doi:10.1007/s12517-013-1173-1
  • Basma, A.A. and Tuncer, E.R., 1991. Effect of lime on volume change and compressibility of expansive clays. Transportation and research record (Vol. C).
  • Bayat, M., Asgari, M.R. and Mousivand, M., 2013, November. Effects of cement and lime treatment on geotechnical properties of a low plasticity clay. In International conference on civil engineering architecture & urban sustainable development (Vol. 27), Tabriz, Iran.
  • Beeghly, J. and Schrock, M., 2010. Dredge material stabilization using the pozzolanic or sulfo-pozzolanic reaction of lime by-products to make an engineered structural fill. International Journal of Soil, Sediment and Water, 3(1), p.6
  • Botero, E., et al., 2015. Stress-strain behavior of a silty soil reinforced with polyethylene terephthalate (PET). Geotextiles and Geomembranes, 43 (4), 363–369. Elsevier Ltd. doi:10.1016/j.geotexmem.2015.04.003
  • Boz, A., et al., 2018. Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences, 11 (6). doi:10.1007/s12517-018-3458-x
  • Boz, A. and Sezer, A., 2018. Influence of fiber type and content on freeze-thaw resistance of fiber reinforced lime stabilized clay. Cold Regions Science and Technology, 151, 359–366. Elsevier B.V. doi:10.1016/j.coldregions.2018.03.026
  • Cabalar, A.F., 2011 July 24. Direct shear tests on waste tires-sand mixtures. Geotechnical and Geological Engineering, 29 (4), 411–418. Springer. doi:10.1007/s10706-010-9386-5
  • Cabalar, A.F. and Karabash, Z., 2015. California bearing ratio of a sub-base material modified with tire buffings and cement addition. Journal of Testing and Evaluation, 43 (6), 1279–1287. ASTM International. doi:10.1520/JTE20130070
  • Chen, M., et al., 2015. Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay. Geotextiles and Geomembranes, 43 (6), 515–523. Elsevier Ltd. doi:10.1016/j.geotexmem.2015.05.004
  • Cheng, Y., et al., 2018. Engineering and mineralogical properties of stabilized expansive soil compositing lime and natural pozzolans. Construction and Building Materials, 187, 1031–1038. Elsevier Ltd. doi:10.1016/j.conbuildmat.2018.08.061
  • Correia, A.A.S., Venda Oliveira, P.J., and Custódio, D.G., 2015. Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders. Geotextiles and Geomembranes, 43 (2), 97–106. doi:10.1016/j.geotexmem.2014.11.008
  • Croft, J.B., 1967. The influence of soil mineralogical composition on cement stabilization. Geotechnique, 17 (2), 119–135. Thomas Telford Ltd. doi:10.1680/geot.1967.17.2.119
  • Dhar, S. and Hussain, M., 2019. The strength behaviour of lime-stabilised plastic fibre-reinforced clayey soil. Road Materials and Pavement Design, 20 (8), 1757–1778. Taylor and Francis Ltd. doi:10.1080/14680629.2018.1468803
  • Ding, M., et al., 2018. Effects of freeze-thaw cycles on mechanical properties of polypropylene fiber and cement stabilized clay. Cold Regions Science and Technology, 154, 155–165. Elsevier B.V. doi:10.1016/j.coldregions.2018.07.004
  • Elgabbas, F., Ahmed, E.A., and Benmokrane, B., 2017. Flexural behavior of concrete beams reinforced with ribbed basalt-FRP bars under static loads. Journal of Composites for Construction, 21 (3), 04016098. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)cc.1943-5614.0000752
  • Eshaghzadeh, M., et al., 2021. Mechanical behavior of silty sand reinforced with nanosilica-coated ceramic fibers. Journal of Adhesion Science and Technology, 1–20. Taylor & Francis. doi:10.1080/01694243.2021.1898857.
  • Fatahi, B., et al., 2013. Small-strain properties of soft clay treated with fibre and cement. Geosynthetics International, 20 (4), 286–300. Thomas Telford Ltd. doi:10.1680/gein.13.00018
  • Gao, L., et al., 2015. Experimental study on unconfined compressive strength of basalt fiber reinforced clay soil. Advances in Materials Science and Engineering, 2015, 1–8. doi:10.1155/2015/561293
  • Ghadakpour, M., Janalizadeh Choobbasti, A., and Soleimani Kutanaei, S., 2019. Investigation of the deformability properties of fiber reinforced cemented sand. Journal of Adhesion Science and Technology, 33 (17), 1913–1938. Taylor and Francis Ltd. doi:10.1080/01694243.2019.1619224
  • Ghadir, P. and Ranjbar, N., 2018. Clayey soil stabilization using geopolymer and Portland cement. Construction and Building Materials, 188, 361–371. Elsevier Ltd. doi:10.1016/j.conbuildmat.2018.07.207
  • Gupta, D. and Kumar, A., 2016. Strength characterization of cement stabilized and fiber reinforced clay–pond ash mixes. International Journal of Geosynthetics and Ground Engineering, 2 (4), 1–11. Springer International Publishing. doi:10.1007/s40891-016-0069-z
  • Gupta, D. and Kumar, A., 2017. Stabilized soil incorporating combinations of rice husk ash, pond ash and cement. Geomechanics and Engineering, 12 (1), 85–109. Techno Press. doi:10.12989/gae.2017.12.1.085
  • Hamidi, A. and Hooresfand, M., 2013. Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles and Geomembranes, 36, 1–9. doi:10.1016/j.geotexmem.2012.10.005
  • Harichane, K., et al., 2011. Use of natural pozzolana and lime for stabilization of cohesive soils. Geotechnical and Geological Engineering, 29 (5), 759–769. doi:10.1007/s10706-011-9415-z
  • Hashemi, M.A., Massart, T.J., and François, B., 2018. Experimental characterisation of clay-sand mixtures treated with lime. European Journal of Environmental and Civil Engineering, 22 (8), 962–977. Taylor and Francis Ltd. doi:10.1080/19648189.2016.1229228
  • Jongpradist, P., et al., 2010. Influence of fly ash on unconfined compressive strength of cement-admixed clay at high water content. Journal of Materials in Civil Engineering, 22 (1), 49–58. doi:10.1061/(asce)0899-1561(2010)22:1(49)
  • Karabash, Z. and Cabalar, A.F., 2015. Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils. Geomechanics and Engineering, 8 (1), 1–15. Techno Press. doi:10.12989/gae.2015.8.1.001
  • Kumar, A. and Gupta, D., 2016. Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash-soil mixtures. Geotextiles and Geomembranes, 44 (3), 466–474. Elsevier Ltd. doi:10.1016/j.geotexmem.2015.07.010
  • Liu, J., et al., 2011. Static liquefaction behavior of saturated fiber-reinforced sand in undrained ring-shear tests. Geotextiles and Geomembranes, 29 (5), 462–471. Elsevier Ltd. doi:10.1016/j.geotexmem.2011.03.002
  • Lu, Y., et al., 2020. Freeze-thaw performance of a cement-treated expansive soil. Cold Regions Science and Technology, 170, 102926. Elsevier B.V. doi:10.1016/j.coldregions.2019.102926
  • Ma, Q. and Gao, C., 2018. Effect of basalt fiber on the dynamic mechanical properties of cement-soil in SHPB test. Journal of Materials in Civil Engineering, 30 (8), 04018185. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)mt.1943-5533.0002386
  • Maheshwari, B.K., Singh, H.P., and Saran, S., 2012. Effects of reinforcement on liquefaction resistance of solani sand. Journal of Geotechnical and Geoenvironmental Engineering, 138 (7), 831–840. American Society of Civil Engineers. doi:10.1061/(asce)gt.1943-5606.0000645
  • Martínez, I.M.R., et al., 2014. Study of clayey soil reinforced with fine crushed polyethylene terephthalate (PET). Revista De Engenharia Civil IMED, 1 (2), 10–14. doi:10.18256/2358-6508/rec-imed.v1n2p10-14
  • Mirmohammad Sadeghi, M. and Hassan Beigi, F., 2014. Dynamic behavior of reinforced clayey sand under cyclic loading. Geotextiles and Geomembranes, 42 (5), 564–572. Elsevier Ltd. doi:10.1016/j.geotexmem.2014.07.005
  • Mishra, B. and Kumar Gupta, M., 2018. Use of randomly oriented polyethylene terephthalate (PET) fiber in combination with fly ash in subgrade of flexible pavement. Construction and Building Materials, 190, 95–107. Elsevier Ltd. doi:10.1016/j.conbuildmat.2018.09.074
  • Moghal, A.A.B., et al., 2020. Desorption of heavy metals from lime-stabilized arid-soils using different extractants. International Journal of Civil Engineering, 18 (4), 449–461. Springer. doi:10.1007/s40999-019-00453-y
  • Momeni, M., Bayat, M., and Ajalloeian, R., 2020. Laboratory investigation on the effects of pH-induced changes on geotechnical characteristics of clay soil. Geomechanics and Geoengineering, 1–9. Taylor and Francis Ltd. doi:10.1080/17486025.2020.1716084.
  • Noorzad, R. and Fardad Amini, P., 2014. Liquefaction resistance of babolsar sand reinforced with randomly distributed fibers under cyclic loading. Soil Dynamics and Earthquake Engineering, 66, 281–292. Elsevier Ltd. doi:10.1016/j.soildyn.2014.07.011
  • Okyay, U.S. and Dias, D., 2010. Use of lime and cement treated soils as pile supported load transfer platform. Engineering Geology, 114 (1–2), 34–44. doi:10.1016/j.enggeo.2010.03.008
  • Olgun, M., 2013. Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20 (4), 263–275. Thomas Telford Ltd. doi:10.1680/gein.13.00016
  • Ouedraogo, K.A.J., et al., 2020. Is stabilization of earth bricks using low cement or lime contents relevant? Construction and Building Materials, 236, 117578. Elsevier Ltd. doi:10.1016/j.conbuildmat.2019.117578
  • Pincus, H., Maher, M., and Ho, Y., 1993. Behavior of fiber-reinforced cemented sand under static and cyclic loads. Geotechnical Testing Journal, 16 (3), 330. ASTM International. doi:10.1520/gtj10054j
  • Pongsivasathit, S., Horpibulsuk, S., and Piyaphipat, S., 2019. Assessment of mechanical properties of cement stabilized soils. Case Studies in Construction Materials, 11, e00301. Elsevier Ltd. doi:10.1016/j.cscm.2019.e00301
  • Puppala, A.J. and Musenda, C., 2000. Effects of fiber reinforcement on strength and volume change in expansive soils. Transportation Research Record, (1736), 134–140. National Research Council. doi:10.3141/1736-17
  • Roohbakhshan, A. and Kalantari, B., 2013. Stabilization of clayey soil with lime and waste stone powder. International Journal of Scientific Research in Knowledge, 1 (12), 547–556. doi:10.12983/ijsrk-2013-p547-556
  • Saadat, M. and Bayat, M., 2019. Prediction of the unconfined compressive strength of stabilised soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR). Geomechanics and Geoengineering, 1–12. Taylor and Francis Ltd. doi:10.1080/17486025.2019.1699668.
  • Saberian, M. and Rahgozar, M.A., 2016. Geotechnical properties of peat soil stabilised with shredded waste tyre chips in combination with gypsum, lime or cement. Mires and Peat, 18 (September). doi:10.19189/MaP.2015.OMB.211
  • Sahlabadi, S.H., Bayat, M., and Mousivand, M., 2021. Freeze – thaw durability of cement-stabilized soil reinforced with polypropylene/basalt fibers. Journal ofMaterials in Civil Engineering, 33 (9), 1–14. doi:10.1061/(ASCE)MT.1943-5533.0003905
  • Salehi, M., et al., 2021. Experimental study on mechanical properties of cement-stabilized soil blended with crushed stone waste. KSCE Journal of Civil Engineering, 25 (6), 1974–1984. doi:10.1007/s12205-021-0953-5
  • Saygili, A. and Dayan, M., 2019. Freeze-thaw behavior of lime stabilized clay reinforced with silica fume and synthetic fibers. Cold Regions Science and Technology, 161, 107–114. Elsevier B.V. doi:10.1016/j.coldregions.2019.03.010
  • Segui, P., et al., 2013. Utilization of a natural pozzolan as the main component of hydraulic road binder. Construction and Building Materials, 40, 217–223. Elsevier Ltd. doi:10.1016/j.conbuildmat.2012.09.085
  • ShahriarKian, M.R., Kabiri, S., and Bayat, M., 2021. Utilization of zeolite to improve the behavior of cement-stabilized soil. International Journal of Geosynthetics and Ground Engineering, 7 (2), 35. Springer. doi:10.1007/s40891-021-00284-9
  • Sharma, R.K., 2017. Laboratory study on stabilization of clayey soil with cement kiln dust and fiber. Geotechnical and Geological Engineering, 35 (5), 2291–2302. Springer International Publishing. doi:10.1007/s10706-017-0245-5
  • Stefanidou, M., Tsardaka, E.C., and Pavlidou, E., 2017. Influence of nano-silica and nano-alumina in lime-pozzolan and lime-metakaolin binders. Materials Today: Proceedings, 4 (7), 6908–6922. Elsevier Ltd. doi:10.1016/j.matpr.2017.07.020
  • Tanzadeh, R., et al., 2019. Experimental study on the effect of basalt and glass fibers on behavior of open-graded friction course asphalt modified with nano-silica. Construction and Building Materials, 212, 467–475. Elsevier Ltd. doi:10.1016/j.conbuildmat.2019.04.010
  • Tomar, A., Sharma, T., and Singh, S., 2020. Strength properties and durability of clay soil treated with mixture of nano silica and polypropylene fiber. Materials Today: Proceedings, 26, Part 3, 3449–3457. Elsevier Ltd. doi:10.1016/j.matpr.2019.12.239
  • Uni, T., et al., 2014. Strength and stiffness response of itanagar soil reinforced with arecanut fiber. International Journal of Innovative Research in Science, Engineering and Technology, 03 (10), 16659–16667. Ess & Ess Research Publications. doi:10.15680/ijirset.2014.0310034
  • Wang, D., et al., 2020. Effect of basalt fiber inclusion on the mechanical properties and microstructure of cement-solidified kaolinite. Construction and Building Materials, 241, 118085. Elsevier Ltd. doi:10.1016/j.conbuildmat.2020.118085
  • Wei, L., et al., 2018. Mechanical properties of soil reinforced with both lime and four kinds of fiber. Construction and Building Materials, 172, 300–308. doi:10.1016/j.conbuildmat.2018.03.248
  • Xiao, H.W., et al., 2013. Fiber reinforced cement treated clay. 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, Paris, France, (Vol.3, pp. 2633–2636). https://www.researchgate.net/publication/306095031
  • Yadav, J.S. and Tiwari, S.K., 2017. Effect of waste rubber fibres on the geotechnical properties of clay stabilized with cement. Applied Clay Science, 149 (August), 97–110. doi:10.1016/j.clay.2017.07.037
  • Yang, B.H., et al., 2017. Strength characteristics of modified polypropylene fiber and cement-reinforced loess. Journal of Central South University, 24 (3), 560–568. doi:10.1007/s11771-017-3458-0
  • Yilmaz, Y. and Ozaydin, V., 2013. Compaction and shear strength characteristics of colemanite ore waste modified active belite cement stabilized high plasticity soils. Engineering Geology, 155, 45–53. Elsevier. doi:10.1016/j.enggeo.2013.01.003
  • Zaimoglu, A.S., 2010. Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold Regions Science and Technology, 60 (1), 63–65. Elsevier B.V. doi:10.1016/j.coldregions.2009.07.001
  • Zaimoglu, A.S., Tan, O., and Akbulut, R.K., 2016. Optimization of consistency limits and plasticity index of fine-grained soils modified with polypropylene fibers and additive materials. KSCE Journal of Civil Engineering, 20 (2), 662–669. doi:10.1007/s12205-015-0540-8
  • Zhang, Y., et al., 2020. Effect of temperature on pH, conductivity, and strength of lime-stabilized soil. Journal of Materials in Civil Engineering, 32 (3), 04019380. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)mt.1943-5533.0003062
  • Zhang, Y., Johnson, A.E., and White, D.J., 2016. Laboratory freeze-thaw assessment of cement, fly ash, and fiber stabilized pavement foundation materials. Cold Regions Science and Technology, 122, 50–57. Elsevier B.V. doi:10.1016/j.coldregions.2015.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.