132
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Praseodymium-oxide decorated montmorillonite nanocomposite as a novel admixture for dredged soil stabilisation

, &
Pages 548-559 | Received 12 Jan 2022, Accepted 01 Jul 2022, Published online: 16 Jul 2022

References

  • Al-Bared, M.A., et al., 2019. Undrained shear strength and microstructural characterization of treated soft soil with recycled materials. Geomechanics and Engineering, 18 (4), 427–437.
  • Al-Swaidani, A., Hammoud, I., and Meziab, A., 2016. Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 8 (5), 714–725. doi:10.1016/j.jrmge.2016.04.002.
  • Andavan, S. and Kumar, B.M., 2020. Case study on soil stabilization by using bitumen emulsions–a review. Materials Today: Proceedings, 22, 1200–1202.
  • Ayodele, B.V., Khan, M.R., and Cheng, C.K., 2017. Greenhouse gases mitigation by CO 2 reforming of methane to hydrogen-rich syngas using praseodymium oxide supported cobalt catalyst. Clean Technologies and Environmental Policy, 19 (3), 795–807. doi:10.1007/s10098-016-1267-z.
  • Azzam, W.R., 2014. Durability of expansive soil using advanced nanocomposite stabilization. International Journal of GEOMATE, 7 (1), 927–937.
  • Bagarello, V., et al., 2006. A laboratory analysis of falling head infiltration procedures for estimating the hydraulic conductivity of soils. Geoderma, 135, 322–334. doi:10.1016/j.geoderma.2005.12.008
  • Bahmani, S.H., et al., 2014. Stabilization of residual soil using SiO2 nanoparticles and cement. Construction and Building Materials, 64, 350–359. doi:10.1016/j.conbuildmat.2014.04.086
  • Changizi, F. and Haddad, A., 2016. Effect of nano-SiO2 on the geotechnical properties of cohesive soil. Geotechnical and Geological Engineering, 34 (2), 725–733. doi:10.1007/s10706-015-9962-9.
  • Choobbasti, A.J. and Kutanaei, S.S., 2017. Microstructure characteristics of cement-stabilized sandy soil using nanosilica. Journal of Rock Mechanics and Geotechnical Engineering, 9 (5), 981–988. doi:10.1016/j.jrmge.2017.03.015.
  • Coudert, E., et al., 2019. Use of alkali activated high-calcium fly ash binder for kaolin clay soil stabilisation: Physicochemical evolution. Construction and Building Materials, 201, 539–552. doi:10.1016/j.conbuildmat.2018.12.188
  • Cristelo, N., et al., 2012. Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction. Construction and Building Materials, 36, 727–735. doi:10.1016/j.conbuildmat.2012.06.037
  • Dermatas, D., Dutko, P., and Moon, D.H., 1999. Use of dredged materials as fill in transportation-related projects. Hoboken, NJ: Center for Environmental Engineering, Stevens Institute of Technology, 71.
  • Emmanuel, E., et al., 2019. Stabilization of a soft marine clay using halloysite nanotubes: a multi-scale approach. Applied Clay Science, 173, 65–78. doi:10.1016/j.clay.2019.03.014
  • Ekinci, A., Scheuermann Filho, H.C., and Consoli, N.C., 2022. Copper slag–hydrated lime–Portland cement stabilised marine-deposited clay. Proceedings of the Institution of Civil Engineers-Ground Improvement, 175 (1), 51–63. doi:10.1680/jgrim.18.00123.
  • Eujine, G.N., Chandrakaran, S., and Sankar, N., 2019. Alteration of CBR values in soft soils using enzymatic lime. In: T. Thyagaraj, ed. Ground improvement techniques and geosynthetics. Singapore: Springer, 19–26.
  • Fattahi Masrour, F., et al., 2021. Effect of nanosilica on the macro-and microbehavior of dispersive clays. Journal of Materials in Civil Engineering, 33 (12), 04021349. doi:10.1061/(ASCE)MT.1943-5533.0003975.
  • Gelsefidi, S., et al., 2013. Application of nanomaterial to stabilize a weak soil. In: 7th International conference on case Histories in Geotechnical Engineering. Chicago.
  • Ghasabkolaei, N., et al., 2017. Geotechnical properties of the soils modified with nanomaterials: a comprehensive review. Archives of Civil and Mechanical Engineering, 17 (3), 639–650. doi:10.1016/j.acme.2017.01.010.
  • Hussain, S.Z., et al., 2016. Functional behavior of lotus rhizome harvested from high altitude Dal Lake of Kashmir. Indian Journal of Ecology, 43 (Special Issue 2), 835–837.
  • Iranpour, B., 2016. The influence of nanomaterials on collapsible soil treatment. Engineering Geology, 205, 40–53. doi:10.1016/j.enggeo.2016.02.015
  • Jan, O.Q. and Mir, B.A., 2018. Strength behaviour of cement stabilised dredged soil. International Journal of Geosynthetics and Ground Engineering, 4 (2), 1–14. doi:10.1007/s40891-018-0133-y.
  • Karumanchi, M., et al., 2020. Improvement of consistency limits, specific gravities, and permeability characteristics of soft soil with nanomaterial: Nanoclay. Materials Today: Proceedings, 33, 232–238.
  • Khan, S.A., Siddiqui, M.F., and Khan, T.A., 2020a. Ultrasonic-Assisted synthesis of polyacrylamide/bentonite hydrogel nanocomposite for the sequestration of lead and cadmium from aqueous phase: equilibrium, kinetics and thermodynamic studies. Ultrasonics Sonochemistry, 60, 104761. doi:10.1016/j.ultsonch.2019.104761
  • Khan, S.A., Siddiqui, M.F., and Khan, T.A., 2020b. Synthesis of poly (methacrylic acid)/montmorillonite hydrogel nanocomposite for efficient adsorption of amoxicillin and diclofenac from aqueous Environment: kinetic, isotherm, reusability, and thermodynamic investigations. ACS Omega, 5 (6), 2843–2855. doi:10.1021/acsomega.9b03617.
  • Kulanthaivel, P., et al., 2020. Experimental investigation on stabilization of clay soil using nanomaterials and white cement. Materials Today: Proceedings 45, 507–511. doi:10.1016/j.matpr.2020.02.107
  • Lang, L., Liu, N., and Chen, B., 2020. Strength development of solidified dredged sludge containing humic acid with cement, lime and nano-SiO2. Construction and Building Materials, 230, 116971. doi:10.1016/j.conbuildmat.2019.116971
  • Liu, Y., et al., 2019. Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue. Construction and Building Materials, 221, 1–11. doi:10.1016/j.conbuildmat.2019.05.157
  • Majeed, Z.H., Taha, M.R., and Jawad, I.T., 2014. Stabilization of soft soil using nanomaterials. Research Journal of Applied Sciences, Engineering and Technology, 8 (4), 503–509. doi:10.19026/rjaset.8.999.
  • Majeed, Z.H. and Taha, M.R., 2013. A review of stabilization of soils by using nanomaterials. Australian Journal of Basic and Applied Sciences, 7 (2), 576–581.
  • Majeed, Z.H. and Taha, M.R., 2012. Effect of nanomaterial treatment on geotechnical properties of a Penang soft soil. Journal of Asian Scientific Research, 2 (11), 587.
  • Meng, T., et al., 2017. Effect of compound nano-CaCO3 addition on strength development and microstructure of cement-stabilized soil in the marine environment. Construction and Building Materials, 151, 775–781. doi:10.1016/j.conbuildmat.2017.06.016
  • Mir, B.A., et al., 2013. Physical and compaction behaviour of dredged material from Dal Lake, Srinagar. International Journal of Civil Engineering Applications, 3 (7), 4–8.
  • Mir, B.A., Shah, B.M., and Shah, F.A., 2017. Some model studies on reinforced dredged soil for sustainable environment. In: Euro-Mediterranean Conference for Environmental Integration. Cham: Springer, 1697–1700.
  • Mishra, A.K., et al., 2011. Controlling factors of the swelling of various bentonites and their correlations with the hydraulic conductivity of soil-bentonite mixtures. Applied Clay Science, 52 (1–2), 78–84. doi:10.1016/j.clay.2011.01.033.
  • MolaAbasi, H., et al., 2020. Evaluation of the long-term performance of stabilized sandy soil using binary mixtures: a micro-and macro-level approach. Journal of Cleaner Production, 267, 122209. doi:10.1016/j.jclepro.2020.122209
  • Moslemizadeh, A., et al., 2016. Assessment of swelling inhibitive effect of CTAB adsorption on montmorillonite in aqueous phase. Applied Clay Science, 127, 111–122. doi:10.1016/j.clay.2016.04.014
  • Naseri, F., Irani, M., and Dehkhodarajabi, M., 2016. Effect of graphene oxide nanosheets on the geotechnical properties of cemented silty soil. Archives of Civil and Mechanical Engineering, 16 (4), 695–701. doi:10.1016/j.acme.2016.04.008.
  • Park, J., et al., 2016. The suitability evaluation of dredged soil from reservoirs as embankment material. Journal of Environmental Management, 183, 443–452. doi:10.1016/j.jenvman.2016.08.063
  • Saltan, M. and Fındık, F.S., 2008. Stabilization of subbase layer materials with waste pumice in flexible pavement. Building and Environment, 43 (4), 415–421. doi:10.1016/j.buildenv.2007.01.007.
  • Samala, H.R. and Mir, B.A., 2020. Some studies on microstructural behaviour and unconfined compressive strength of soft soil treated with SiO2 nanoparticles. Innovative Infrastructure Solutions, 5 (1), 1–12. doi:10.1007/s41062-020-0283-3.
  • Sharo, A.A. and Alawneh, A.S., 2016. Enhancement of the strength and swelling characteristics of expansive clayey soil using Nano-clay material. Geo-Chicago 2016, 451–457.
  • Tanzadeh, R., Vafaeian, M., and Fard, M.Y., 2019. Effects of micro-nano-lime (CaCO3) particles on the strength and resilience of road clay beds. Construction and Building Materials, 217, 193–201. doi:10.1016/j.conbuildmat.2019.05.048
  • Wang, W., et al., 2019. Characterisation of nano magnesia–cement-reinforced seashore soft soil by direct-shear test. Marine Georesources & Geotechnology, 37 (8), 989–998. doi:10.1080/1064119X.2018.1515283.
  • Wani, K.S. and Mir, B.A., 2020. Stabilization of weak dredged soils by employing waste boulder crusher dust: a laboratory study. Geotechnical and Geological Engineering, 38 (6), 6827–6842. doi:10.1007/s10706-020-01472-6.
  • Wen-Jie, X., Qiang, X., and Rui-Lin, H., 2011. Study on the shear strength of soil–rock mixture by large scale direct shear test. International Journal of Rock Mechanics and Mining Sciences, 48 (8), 1235–1247. doi:10.1016/j.ijrmms.2011.09.018.
  • Yao, K., et al., 2019. Investigation on strength and microstructure characteristics of nano-MgO admixed with cemented soft soil. Construction and Building Materials, 206, 160–168. doi:10.1016/j.conbuildmat.2019.01.221
  • Yoobanpot, N., Jamsawang, P., and Horpibulsuk, S., 2017. Strength behavior and microstructural characteristics of soft clay stabilized with cement kiln dust and fly ash residue. Applied Clay Science, 141, 146–156. doi:10.1016/j.clay.2017.02.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.