224
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Combining machine learning and numerical modelling for rockburst prediction

ORCID Icon & ORCID Icon
Pages 183-198 | Received 28 Nov 2022, Accepted 24 Apr 2023, Published online: 01 May 2023

References

  • Afraei, S., Shahriar, K., and Madani, S.H., 2018. Statistical assessment of rock burst potential and contributions of considered predictor variables in the task. Tunnelling and Underground Space Technology, 72, 250–271. doi:10.1016/j.tust.2017.10.009
  • Cai, M., et al. 2004. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. International Journal of Rock Mechanics and Mining Sciences, 41 (5), 833–847. doi:10.1016/j.ijrmms.2004.02.001.
  • Chen, Y., et al. 2022. Bagged ensemble of gaussian process classifiers for assessing Rockburst damage potential with an imbalanced dataset. Mathematics, 10 (18), 3382. doi:10.3390/math10183382.
  • Diederichs, M.S. 2007. The 2003 Canadian geotechnical colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Canadian Geotechnical Journal, 44 (9), 1082–1116. doi:10.1139/t07-033.
  • Diederichs, M.S. 2018. Early assessment of dynamic rupture hazard for rockburst risk management in deep tunnel projects. Journal of the Southern African Institute of Mining and Metallurgy, 118 (3), 193–204. doi:10.17159/24119717/2018/v118n3a1.
  • Dudek, A., 2020. Silhouette index as clustering evaluation tool. Studies in Classification, Data Analysis, and Knowledge Organization, 19–33. doi:10.1007/978-3-030-52348-0_2.
  • Ghasemi, E., Gholizadeh, H., and Adoko, A.C., 2019. Evaluation of rockburst occurrence and intensity in underground structures using decision tree approach. Engineering with Computers, 36 (1), 213–225. doi:10.1007/s00366-018-00695-9.
  • Hajiabdolmajid, V., Kaiser, P.K., and Martin, C.D. 2002. Modelling brittle failure of Rock. International Journal of Rock Mechanics and Mining Sciences, 39 (6), 731–741. doi:10.1016/s1365-1609(02)00051-5.
  • Hoek, E., 2007. Practical rock engineering: RocScience, ( Available from the publisher at http://www.rocscience.com/hoek/PracticalRockEngineering.asp.
  • Huang, B. and Liu, J., 2013. The effect of loading rate on the behavior of samples composed of coal and Rock. International Journal of Rock Mechanics and Mining Sciences, 61, 23–30. doi:10.1016/j.ijrmms.2013.02.002
  • Jiang, J., et al., 2020. Relationship between brittleness index and crack initiation stress ratio for different rock types. Advances in Civil Engineering, 2020, 1–12. doi:10.1155/2020/8091895
  • Jiang, Y., et al., 2014. State of the art review on mechanism and prevention of coal bumps in China. Journal of China Coal Society, 39, 205–213. doi:10.13225/j.cnki.jccs.2013.0024
  • Keneti, A. and Sainsbury, B.A., 2018. Review of published ROCKBURST events and their contributing factors. Engineering Geology, 246, 361–373. doi:10.1016/j.enggeo.2018.10.005
  • Li, D., et al., 2022a. Novel ensemble intelligence methodologies for rockburst assessment in complex and variable environments. Scientific Reports, 12 (1). doi:10.1038/s41598-022-05594-0.
  • Li, D., et al. 2022b. Intelligent rockburst prediction model with sample category balance using feedforward neural network and bayesian optimization. Underground Space, 7 (5), 833–846. doi:10.1016/j.undsp.2021.12.009.
  • Li, N., Feng, X., and Jimenez, R., 2017. Predicting rock burst hazard with incomplete data using Bayesian Networks. Tunnelling and Underground Space Technology, 61, 61–70. doi:10.1016/j.tust.2016.09.010
  • Li, N. and Jimenez, R. 2018. A logistic regression classifier for long-term probabilistic prediction of Rock Burst Hazard. Natural Hazards, 90 (1), 197–215. doi:10.1007/s11069-017-3044-7.
  • Müller, W. 1991. Numerical simulation of rock bursts. Mining Science and Technology, 12 (1), 27–42. doi:10.1016/0167-9031(91)91513-h.
  • Ocak, I. 2008. Estimating the modulus of elasticity of the rock material from compressive strength and unit weight. Journal of South African Institute of Mining and Metallurgy, 108 (10), 621–626.
  • Ortlepp, W., 2005. Rasim comes of age—a review of the contribution to the understanding and control of mine rockbursts. Proceedings of the Sixth International Symposium on Rockburst and Seismicity in Mines Proceedings. doi:10.36487/acg_repo/574_0.1
  • Palmstrøm, A. 1996. Characterizing rock masses by the RMI for use in practical rock engineering. Tunnelling and Underground Space Technology, 11 (2), 175–188. doi:10.1016/0886-7798(96)00015-6.
  • Panthi, K.K., 2018. Methods applied in the prediction of brittle failure in tunnels and underground caverns. Hydro Nepal: Journal of Water, Energy and Environment, 22, 5–9. doi:10.3126/hn.v22i0.18990
  • Papadopoulos, D. and Benardos, A. 2021. Enhancing machine learning algorithms to assess rock burst phenomena. Geotechnical and Geological Engineering, 39 (8), 5787–5809. doi:10.1007/s10706-021-01867-z.
  • Pu, Y., et al. 2019. Machine learning methods for rockburst prediction-state-of-the-art review. International Journal of Mining Science and Technology, 29 (4), 565–570. doi:10.1016/j.ijmst.2019.06.009.
  • Qiu, Y., et al., 2021. Performance evaluation of hybrid WOA-XGBoost, GWO-XGboost and BO-XGBoost models to predict blast-induced ground vibration. Engineering with Computers, 38 (S5), 4145–4162. doi:10.1007/s00366-021-01393-9.
  • Russenes, B.F., 1974. Analysis of rock spalling for tunnels in steep valley sides. Master thesisNorwegian Institute of Technology.
  • Shirani Faradonbeh, R. and Taheri, A., 2018. Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques. Engineering with Computers, 35 (2), 659–675. doi:10.1007/s00366-018-0624-4.
  • Vlachopoulos, N. and Vazaios, I., 2018. The numerical simulation of hard rocks for tunnelling purposes at great depths: a comparison between the hybrid FDEM method and continuous techniques. Advances in Civil Engineering, 2018, 1–18. doi:10.1155/2018/3868716
  • Wang, S., et al., 2021. Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques. Journal of Central South University, 28 (2), 527–542. doi:10.1007/s11771-021-4619-8.
  • Witten, I.H., Frank, E., and Hall, M.A., 2011. Introduction to weka. Data Mining: Practical Machine Learning Tools and Techniques, 403–406. doi:10.1016/b978-0-12-374856-0.00010-9.
  • Wu, M., et al. 2022. Development of rockburst research: a comprehensive review. Applied Sciences, 12 (3), 974. doi:10.3390/app12030974.
  • Wu, S., Wu, Z., and Zhang, C., 2019. Rock burst prediction probability model based on case analysis. Tunnelling and Underground Space Technology, 93, 103069. doi:10.1016/j.tust.2019.103069
  • Xue, Y., et al. 2022. Intelligent prediction of rockburst based on copula-MC oversampling architecture. Bulletin of Engineering Geology and the Environment, 81 (5), 5. doi:10.1007/s10064-022-02659-2.
  • Zhou, J., et al. 2021. Proposing a novel comprehensive evaluation model for the coal burst liability in underground coal mines considering uncertainty factors. International Journal of Mining Science and Technology, 31 (5), 799–812. doi:10.1016/j.ijmst.2021.07.011.
  • Zhou, J., et al. 2020. Investigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithm. Engineering with Computers, 37 (3), 1679–1694. doi:10.1007/s00366-019-00908-9.
  • Zhou, J., Huang, S., and Qiu, Y., 2022. Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations. Tunnelling and Underground Space Technology, 124, 104494. doi:10.1016/j.tust.2022.104494
  • Zhou, J., Li, X., and Mitri, H.S., 2018. Evaluation method of rockburst: state-of-the-art literature review. Tunnelling and Underground Space Technology, 81, 632–659. doi:10.1016/j.tust.2018.08.029
  • Zhou, J., Li, X., and Mitri, H.S. 2016. Classification of rockburst in underground projects: comparison of ten supervised learning methods. Journal of Computing in Civil Engineering, 30 (5), 5. doi:10.1061/(asce)cp.1943-5487.0000553.
  • Zhou, J., Li, X., and Shi, X. 2012. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support Vector Machines. Safety Science, 50 (4), 629–644. doi:10.1016/j.ssci.2011.08.065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.