134
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A parametric study on deformation behaviour for design of braced excavation in soft clay

, , & ORCID Icon
Pages 284-300 | Received 14 May 2021, Accepted 23 Aug 2023, Published online: 30 Aug 2023

References

  • Bjerrum, L. and Eide, O., 1956. Stability of strutted excavations in clay. Géotechnique, 6 (1), 32–47. doi:10.1680/geot.1956.6.1.32.
  • Bowles, J.E., 1988. Foundation analysis and design. 4th Ed., New York: McGraw Hill.
  • Brinkgreve, R.B.J. and Vermeer, P.A., 2002. Plaxis version 8 user’s manual. Rotterdam, The Netherlands: Balkema.
  • Chowdhury, S.S., Deb, K., and Sengupta, A., 2013. Estimation of design parameters for braced excavation: Numerical study. International Journal of Geomechanics © ASCE, 13 (3), 234–247. doi:10.1061/(ASCE)GM.1943-5622.0000207.
  • Chowdhury, S.S., Deb, K., and Sengupta, A., 2016. Effect of fines on behavior of braced excavation in sand: Experimental and numerical study. International Journal of Geomechanics ASCE, 16 (1). doi:10.1061/(ASCE)GM.1943-5622.0000487.
  • Clough, G.W. and O’Rourkee, T.D. (1990) Construction induced movements of in situ walls. In Proc. Conf. on Design and Performance of Earth Retaining Structures, ASCE, Geotechnical Special Publication ASCE, New York, 25, 439–470.
  • Dan, K. and Sahu, R.B., 2012. A theoretical study on ground movement prediction for braced excavation in soft clay. International Journal of Geotechnical Engineering, 6 (1), 53–64. doi:10.3328/IJGE.2012.06.01.53-64.
  • Dan, K. and Sahu, R.B., 2015. An inverse analysis for parameters estimation of braced excavation in soft clay using non-linear programming. Indian Geotechnical Journal, 45 (3), 291–303. doi:10.1007/s40098-014-0132-4.
  • Dan, K. and Sahu, R.B., 2018. Estimation of ground movement and wall deflection in braced excavation by minimum potential energy approach. International Journal of Geomechanics, 18 (7), 1–20. © ASCE, ISSN 1532-3641. doi:https://doi.org/10.1061/(ASCE)GM.1943-5622.0001105.
  • Dan, K. and Sahu, R.B., 2022. Effect of arching on active earth pressure distribution against braced wall. International Journal of Geotechnical Engineering, 16 (7), 826–837. doi:10.1080/19386362.2021.1912921.
  • Dang, H.P., Lin, H.D., and Juang, H., 2014. Analyses of braced excavation considering parameter uncertainties using a finite element code. Journal of the Chinese Institute of Engineers, 37 (2), 141–151. doi:10.1080/02533839.2013.781790.
  • Dang, H.P., et al., 2012. Deformation behaviour analyses of braced excavation considering adjacent structure by user-defined soil models. Journal of GeoEngineering, 7 (1), 13–20.
  • De Lyra Nogueira, C., de Azevedo, R., and Zornberg, J., 2009. Coupled analyses of excavations in saturated soil. International Journal of Geomech, 9 (2), 73–81. doi:10.1061/(ASCE)1532-3641(2009)9:2(73).
  • Dong, M. and Jia, P., 2020. Stability analysis and parameter optimization of deep excavation supporting system in granular soils. Advances in Civil Engineering, 2020, 1–10. doi:10.1155/2020/8873655
  • Finno, R.J. and Harahap, I.S., 1991. Finite element analysis of HDR-4 excavation. Journal of Geotechnical Engineering, 117 (10), 1590–1609. doi:10.1061/(ASCE)0733-9410(1991)117:10(1590).
  • Finno, R.J., Atmatzidis, D.K., and Roboski, J.F., 2007. Three dimensional effects for supported excavations in clay. Journal of Geotechnical and Geoenvironmental Engineering, 133 (1), 30–36. 10.1061/ASCE1090-02412007133:130
  • Goh, A.T.C., et al., 2017. A simple estimation model for 3D braced excavation wall deflection. Computers and Geotechnics, 83, 106–113. doi:10.1016/j.compgeo.2016.10.022
  • Goldberg, D.T., Jaworski, W.E., and Gordon, M.D. 1976. Lateral support systems and underpinning. Vol. 1: Design and construction, Vol. 2: Design fundamentals, Vol. 3: Construction methods. Federal Highway Administration, Reports, 465. https://rosap.ntl.bts.gov/view/dot/14528
  • Guo, P., et al., 2022. Soil creep effect on time-dependent deformation of deep braced excavation. Hindawi Advances in Material Science and Engineering, 2022, 1–14. doi:10.1155/2022/5655592
  • Hong, L., Chen, L., and Wang, X., 2022. Reliability analysis of serviceability limit state for braced excavation considering multiple failure modes in spatially variable soil. Buildings, 12 (6), 722. doi:https://doi.org/10.3390/buildings12060722.
  • Hsiung, B.C.B., 2009. A case study of behavior of deep excavation in sand. Computers and Geotechnics, 36 (4), 665–675. doi:10.1016/j.compgeo.2008.10.003.
  • Hsieh, P.G. and Ou, C.Y., 1998. Shape of ground surface settlement profiles caused by excavation. Canadian Geotechnical Journal, 35 (6), 1004–1017. doi:10.1139/t98-056.
  • Imtiaz, H., et al., 2019. 2D numerical analysis of deformations in diaphragm wall supported by horizontal struts, ninth Intl. Conference on Advances in Civil, Structural and Mechanical Engineering – ACSM, ISBN No. 978-1-63248-173-3, doi: 10.15224/978-1-63248-173-3-01.
  • Lambe, T.W. (1970) Braced excavations. Proceedings Speciality Conference Lateral stresses in the ground and Design of Earth Retaining Structures, 70. Ithaca, N.Y. 149–218.
  • Nogueira, C., Azevedo, R., and Zornberg, J., 2011. Validation of coupled simulation of excavations in saturated clay: Camboinhas case history. International Journal of Geomech, 11 (3), 202–210. doi:10.1061/(ASCE)GM.1943-5622.0000077.
  • O’Rourke, T.D., 1981. Ground movements caused by braced excavations. Journal of the Geotechnical Engineering Division, ASCE, 107 (9), 1159–1178. doi:10.1061/AJGEB6.0001183.
  • Ou, C.Y., Hsieh, P.G., and Chiou, D.C., 1993. Characteristics of ground surface settlement during excavation. Canadian Geotechnical Journal, 30 (5), 758–767. doi:10.1139/t93-068.
  • Palmer, J.H.L.V. and Kenney, T.C., 1972. Analytical study of a braced excavation in weak clay. Canadian Geotechnical Journal, 9 (2), 142–164. doi:10.1139/t72-016.
  • Peck, R.B. (1969) Deep excavations and tunneling in soft-ground. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, 3, 225–290.
  • Som, N.N. (2000) Report on Building settlement in Cut and Cover Construction for Northern Stretches of Calcutta Metro. ( Unpublished Report). Jadavpur University.
  • Tefera, T.H., et al., 2006. Ground settlement and wall deformation from a large-scale model teston a single strutted sheet pile wall in sand. International Journal of Physical Modelling in Geotechnics, 6 (2), 01–13. doi:10.1680/ijpmg.2006.060201.
  • Teparaksa, W. and Teparaksa, J., 2019. Comparison of diaphragm wall movement prediction and field performance for different construction techniques. Underground Space, 4 (3), 225–234. doi:10.1016/j.undsp.2019.01.001.
  • Terzaghi, K., 1943. Theoretical soil Mechanics. New York: John Wiley & Sons, Inc. doi:10.1002/9780470172766.
  • Thasnanipan, N., et al. (1998) Performance of a braced excavation in Bangkok clay. Diaphragm Wall Subject to Unbalanced Loading Conditions. Thirteenth Southeast Asian Geotechnical Conference, Taipei, Taiwan: ROC. 655–660.
  • Whittle, A.J., Hashash, Y.M.A., and Whitman, R.V., 1993. Analysis of deep excavation in Boston. Journal of Geotechnical Engineering, 119 (1), 69–90. doi:10.1061/(ASCE)0733-9410(1993)119:1(69).
  • Xiang, Y., et al., 2018. A multivariate adaptive regression splines model for estimation of maximum wall deflections induced by braced excavation. Geomechanics and Engineering, 14 (4), 315–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.