54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing the zeolite’s effectiveness on the mechanical performance of cement-stabilised sand through triaxial test and microstructure analysis

, &
Received 17 Apr 2023, Accepted 29 Feb 2024, Published online: 09 May 2024

References

  • Abdulla, A.A. and Kiousis, P.D., 1997. Behavior of cemented sands—I. Testing. International Journal for Numerical and Analytical Methods in Geomechanics, 21 (8), 533–547. doi:10.1002/(SICI)1096-9853(199708)21:8<533:AID-NAG889>3.0.CO;2-0.
  • Ajorloo, A., Mroueh, H., and Lancelot, L., 2012. Experimental investigation of cement treated sand behavior under triaxial test. Geotechnical and Geological Engineering, 30 (1), 129–143. doi:10.1007/s10706-011-9455-4.
  • Asghari, E., Toll, D., and Haeri, S., 2003. Triaxial behaviour of a cemented gravely sand, Tehran alluvium. Geotechnical & Geological Engineering, 21 (1), 1–28. doi:10.1023/A:1022934624666.
  • ASTM International, 2015. Standard test methods for maximum index density and unit weight of soils using a vibratory table. USA: ASTM, 1–6.
  • ASTM International, 2016. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. USA: American Society for Testing and Materials.
  • Ávalos-Rendón, T.L., et al., 2018. Synthesis of belite cements at low temperature from silica fume and natural commercial zeolite. Materials Science and Engineering: B, 229, 79–85. doi:10.1016/j.mseb.2017.12.020.
  • Bilim, C., 2011. Properties of cement mortars containing clinoptilolite as a supplementary cementitious material. Construction and Building Materials, 25 (8), 3175–3180. doi:10.1016/j.conbuildmat.2011.02.006.
  • Bilim, C., 2018. The effect of sodium carbonate on elevated temperature resistance of cement mortars containing natural zeolite. Turkish Journal of Engineering, 2 (1), 12–16. doi:10.31127/tuje.334004.
  • Bishop, A.W., and Henkel, D.J., 1957. In: A.W. Bishop and D.J. Henkel, eds. The measurement of soil properties in the triaxial test. London: E. Arnold.
  • Bowman, R.S., et al., 1995. Sorption of nonpolar organic compounds, inorganic cations, and inorganic oxyanions by surfactant-modified zeolites. Washington, DC, USA: American Chemical Society.
  • Canpolat, F., et al., 2004. Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production. Cement and Concrete Research, 34 (5), 731–735. doi:10.1016/S0008-8846(03)00063-2.
  • Chen, J., et al., 2017. Effects of superfine zeolite on strength, flowability and cohesiveness of cementitious paste. Cement and Concrete Composites, 83, 101–110. doi:10.1016/j.cemconcomp.2017.06.010.
  • Chen, J., et al., 2019. Lowering cement content in mortar by adding superfine zeolite as cement replacement and optimizing mixture proportions. Journal of Cleaner Production, 210, 66–76. doi:10.1016/j.jclepro.2018.11.007.
  • Choobbasti, A.J., Vafaei, A., and Soleimani Kutanaei, S., 2018. Static and cyclic triaxial behavior of cemented sand with nanosilica. Journal of Materials in Civil Engineering, 30 (10), 04018269. doi:10.1061/(ASCE)MT.1943-5533.0002464.
  • Colella, C., 1996. Ion exchange equilibria in zeolite minerals. Mineralium Deposita, 31 (6), 554–562. doi:10.1007/BF00196136.
  • Consoli, N.C., et al. 2009. Fundamental parameters for the stiffness and strength control of artificially cemented sand. Journal of Geotechnical and Geoenvironmental Engineering, 135 (9), 1347–1353. doi:10.1061/(ASCE)GT.1943-5606.0000008.
  • Dadda, A., et al., 2019. Influence of the microstructural properties of biocemented sand on its mechanical behavior. International Journal for Numerical and Analytical Methods in Geomechanics, 43 (2), 568–577. doi:10.1002/nag.2878.
  • Ghiara, M.R. and Petti, C., 1995. Chemical alteration of volcanic glasses and related control by secondary minerals: experimental studies. Aquatic Geochemistry, 1 (4), 329–354. doi:10.1007/BF00702738.
  • Ho, L.S., et al., 2018. Strength development of cement-treated sand using different cement types cured at different temperatures. MATEC Web of Conferences, FIB-Indonesia. 01006. https://sipil.ft.uns.ac.id/icrmce04/.
  • Inglezakis, V.J., Loizidou, M.D., and Grigoropoulou, H.P., 2003. Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. Journal of Colloid and Interface Science, 261 (1), 49–54. doi:10.1016/S0021-9797(02)00244-8.
  • Izadpanah, S., Shooshpasha, I., and Hajiannia, A., 2021. The impact of zeolite on mineralogy changes and compressive strength development of cement-treated sand mixtures through microstructure analysis. Scientia Iranica, 28 (3), 1182–1194.
  • Jacobs, P.H. and Förstner, U., 1999. Concept of subaqueous capping of contaminated sediments with Active Barrier Systems (ABS) using natural and modified zeolites. Water Research, 33 (9), 2083–2087. doi:10.1016/S0043-1354(98)00432-1.
  • Jafarpour, P., Moayed, R.Z., and Kordnaeij, A., 2020. Behavior of zeolite-cement grouted sand under triaxial compression test. Journal of Rock Mechanics and Geotechnical Engineering, 12 (1), 149–159.
  • Karabash, Z. and Cabalar, A.F., 2015. Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils. Geomechanics and Engineering, 8 (1), 1–15. doi:10.12989/gae.2015.8.1.001.
  • Kordnaeij, A., Moayed, R.Z., and Soleimani, M., 2019. Shear wave velocity of zeolite-cement grouted sands. Soil Dynamics and Earthquake Engineering, 122, 196–210. doi:10.1016/j.soildyn.2019.03.026
  • Kurudirek, M., et al., 2010. A study of chemical composition and radiation attenuation properties in clinoptilolite-rich natural zeolite from Turkey. Radiation Physics and Chemistry, 79 (11), 1120–1126. doi:10.1016/j.radphyschem.2010.06.003.
  • Ladd, R.S., 1977. Specimen preparation and cyclic stability of sands. Journal of the Geotechnical Engineering Division, 103 (6), 535–547. doi:10.1061/AJGEB6.0000435.
  • Lee, Y.L., et al., 2018. Strength performance on different mix of cement-sand ratio and sand condition for lightweight foamed concrete. E3S Web of Conferences, Tokyo, Japan. 02006. https://iccee.org/iccee2018.html.
  • Lothenbach, B., Scrivener, K., and Hooton, R., 2011. Supplementary cementitious materials. Cement and Concrete Research, 41 (12), 1244–1256. doi:10.1016/j.cemconres.2010.12.001.
  • Mamaru, D., 2020. Suitability of crushed manufactured sand for replacement of natural river sand to produce c-25 concrete. Journal of Civil and Environmental Engineering, 10 (7), 1–8.
  • Markiv, T., et al., 2016. Mechanical and durability properties of concretes incorporating natural zeolite. Archives of Civil and Mechanical Engineering, 16 (4), 554–562. doi:10.1016/j.acme.2016.03.013.
  • Mehta, P., 1981. Studies on blended Portland cements containing Santorin earth. Cement and Concrete Research, 11 (4), 507–518. doi:10.1016/0008-8846(81)90080-6.
  • Mier, M.V., et al., 2001. Heavy metal removal with Mexican clinoptilolite: multi-component ionic exchange. Water Research, 35 (2), 373–378. doi:10.1016/S0043-1354(00)00270-0.
  • Mola-Abasi, H., Khajeh, A., and Naderi Semsani, S., 2018. Variables controlling tensile strength of stabilized sand with cement and zeolite. Journal of Adhesion Science and Technology, 32 (9), 947–962. doi:10.1080/01694243.2017.1388052.
  • Mola-Abasi, H., Khajeh, A., and Semsani, S.N.S., 2018. Porosity/(SiO2 and Al2O3 particles) ratio controlling compressive strength of zeolite-cemented sands. Geotechnical and Geological Engineering, 36, 949–958. doi:10.1007/s10706-017-0367-9
  • Mola-Abasi, H., Kordtabar, B., and Kordnaeij, A., 2016. Effect of natural zeolite and cement additive on the strength of sand. Geotechnical and Geological Engineering, 34 (5), 1539–1551. doi:10.1007/s10706-016-0060-4.
  • MolaAbasi, H. and Shooshpasha, I., 2017. Polynomial models controlling strength of zeolite-cement-sand mixtures. Scientia Iranica, 24 (2), 526–536. doi:10.24200/sci.2017.2415.
  • Nagrockiene, D. and Girskas, G., 2016. Research into the properties of concrete modified with natural zeolite addition. Construction and Building Materials, 113, 964–969. doi:10.1016/j.conbuildmat.2016.03.133
  • Park, J.-B., et al., 2002. Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B). Journal of Hazardous Materials, 95 (1–2), 65–79. doi:10.1016/S0304-3894(02)00007-9.
  • Perraki, T., Kakali, G., and Kontoleon, F., 2003. The effect of natural zeolites on the early hydration of Portland cement. Microporous and Mesoporous Materials, 61 (1–3), 205–212. doi:10.1016/S1387-1811(03)00369-X.
  • Poon, C.S., et al. 1999. A study on the hydration rate of natural zeolite blended cement pastes. Construction and Building Materials, 13 (8), 427–432. doi:10.1016/S0950-0618(99)00048-3.
  • Ramezanianpour, A.A., et al., 2013. Use of natural zeolite to produce self-consolidating concrete with low Portland cement content and high durability. Journal of Materials in Civil Engineering, 25 (5), 589–596. doi:10.1061/(ASCE)MT.1943-5533.0000621.
  • Rhimi, B., et al., 2016. Ammoxidation of ethylene to acetonitrile over vanadium and molybdenum supported zeolite catalysts prepared by solid-state ion exchange. Journal of Molecular Catalysis A: Chemical, 416, 127–139. doi:10.1016/j.molcata.2016.02.028.
  • Salamatpoor, S., Jafarian, Y., and Hajiannia, A., 2018. Physical and mechanical properties of sand stabilized by cement and natural zeolite. The European Physical Journal Plus, 133 (5), 205. doi:10.1140/epjp/i2018-12016-0.
  • ShahriarKian, M., Kabiri, S., and Bayat, M., 2021. Utilization of zeolite to improve the behavior of cement-stabilized soil. International Journal of Geosynthetics & Ground Engineering, 7 (2), 35. doi:10.1007/s40891-021-00284-9.
  • Shooshpasha, I., Abbasi, M., and Najafniya, H., 2018. Analyzing the effect of nano-silica-cement mixture on shear strength of babolsar sandy soil. Amirkabir Journal of Civil Engineering, 50 (1), 179–188.
  • Tekin, R. and Bac, N., 2016. Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Microporous and Mesoporous Materials, 234, 55–60. doi:10.1016/j.micromeso.2016.07.006
  • Valipour, M., et al., 2014. Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments. Journal of Cleaner Production, 65, 418–423. doi:10.1016/j.jclepro.2013.07.055.
  • Vejmelková, E., et al., 2015. Engineering properties of concrete containing natural zeolite as supplementary cementitious material: strength, toughness, durability, and hygrothermal performance. Cement and Concrete Composites, 55, 259–267. doi:10.1016/j.cemconcomp.2014.09.013.
  • Villalobos, F., et al., 2018. Experimental study of the fine particles effect on the shear strength of tuff zeolites. Revista de la Construcción, 23–27. doi:10.7764/RDLC.17.1.23.
  • Weibel, R., et al., 2019. Thermogenetic degradation of early zeolite cement: an important process for generating anomalously high porosity and permeability in deeply buried sandstone reservoirs? Marine and Petroleum Geology, 103, 620–645. doi:10.1016/j.marpetgeo.2019.02.006.
  • Xu, W., et al., 2019. Evaluation of inherent factors on flowability, cohesiveness and strength of cementitious mortar in presence of zeolite powder. Construction and Building Materials, 214, 61–73. doi:10.1016/j.conbuildmat.2019.04.115.
  • Xu, Y., Ge, J., and Huang, W., 2019. Energy analysis on dynamic fragmentation degree of cemented sand specimens under confining pressure. Shock and Vibration, 2019, 1–12. doi:10.1155/2019/5893957
  • Yang, J., et al. 2018. Experimental study on the shear strength of cement-sand-gravel material. Advances in Materials Science and Engineering, 2018, 1–11. doi:10.1155/2018/2531642.
  • Yilmaz, E., Belem, T., and Benzaazoua, M., 2015. Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions. Engineering Geology, 185, 52–62. doi:10.1016/j.enggeo.2014.11.015
  • Yukselen-Aksoy, Y., 2010. Characterization of two natural zeolites for geotechnical and geoenvironmental applications. Applied Clay Science, 50 (1), 130–136. doi:10.1016/j.clay.2010.07.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.