2,285
Views
1
CrossRef citations to date
0
Altmetric
Articles

The DINGO database of axial pile load tests for the UK: settlement prediction in fine-grained soils

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 640-661 | Received 27 Nov 2020, Accepted 02 Aug 2021, Published online: 16 Sep 2021

References

  • AbdelSalam, S. S., F. A. Baligh, and H. M. El-Naggar. 2015. “A Database to Ensure Reliability of Bored Pile Design in Egypt.” Proceedings of the Institution of Civil Engineers – Geotechnical Engineering 168 (2): 131–143. doi:10.1680/geng.14.00051.
  • Anoyatis, G. M. 2013. “Contribution to Kinematic and Inertial Analysis of Piles by Analytical and Experimental Methods.” Ph.D. thesis. University of Patras, Patras, Greece.
  • Baguelin, F., and R. Frank. 1980. “Theoretical Studies of Piles Using the Finite Element Method.” In Numerical Methods in Offshore Piling, edited by I. M. Smith, P. George and W. J. Rigden, 83–91. London: Institution of Civil Engineers (ICE).
  • Bateman, A. H., J. J. Crispin, P. J. Vardanega, and G. E. Mylonakis. 2021. Theoretical “t-z” Curves for Axially-Loaded Piles. under review.
  • Beesley, M. B., and P. J. Vardanega. 2020. “Parameter Variability of Undrained Shear Strength and Strain Using a Database of Reconstituted Soil Tests.” Canadian Geotechnical Journal 57 (8): 1247–1255. doi:10.1139/cgj-2019-0424.
  • Bolton, M. D. 1981. “Limit State Design in Geotechnical Engineering.” Ground Engineering 14 (6): 39–46.
  • Brettell, T. R., R. P. Dowling, M. A. Wiechecki, P. A. Nowak, and J. D. Maddison. 2021. “Large Diameter Pile Foundations in Heavily Overconsolidated Strata: A14 Cambridge to Huntington Improvement Scheme Case History.” In Piling 2020: Proceedings of the Piling 2020 Conference, edited by K. G. Higgins, Y. Ainsworth, D. G. Toll, and A. S. Osman, 399–404. London: ICE Publishing.
  • Burd, H. J., W. J. A. P. Beuckelaers, B. W. Byrne, K. Gavin, G. T. Houlsby, D. Igoe, R. J. Jardine, et al. 2020a. “New Data Analysis Methods for Instrumented Medium Scale Monopile Field Tests.” Géotechnique 70 (11): 961–969. doi:10.1680/jgeot.18.pisa.002.
  • Burd, H. J., D. M. G. Taborda, L. Zdravković, C. N. Abadie, B. W. Byrne, G. T. Houlsby, K. Gavin, et al. 2020b. “PISA Design Model for Monopiles for Offshore Wind Turbines: Application to a Marine Sand.” Géotechnique 70 (11): 1048–1066. doi:10.1680/jgeot.18.P.277.
  • Butterfield, R., and P. K. Banerjee. 1971. “The Elastic Analysis of Compressible Piles and Pile Groups.” Géotechnique 21 (1): 43–60. doi:10.1680/geot.1971.21.1.43.
  • Byrne, B. W., R. A. McAdam, H. J. Burd, W. J. A. P. Beuckelaers, K. Gavin, G. T. Houlsby, D. Igoe, et al. 2020. “Monotonic Lateral Loaded Pile Testing in a Stiff Glacial Clay Till at Cowden.” Géotechnique 70 (11): 970–985. doi:10.1680/jgeot.18.pisa.003.
  • Byrne, B. W., R. A. McAdam, H. J. Burd, G. T. Houlsby, C. M. Martin, W. J. A. P. Beuckelaers, L. Zdravkovic, et al. 2017. PISA: New Design Methods for Offshore Wind Turbine Monopiles, In: Offshore Site Investigation Geotechnics: Smarter Solutions for Future Offshore Developments. Proceedings of the 8th International Conference 12-14 September 2017, Royal Geographical Society, London, UK, Society for Underwater Technology, pp. 142-161. https://doi.org/10.3723/OSIG17.142.
  • Chandler, R. J., and A. Forster. 2001. Engineering in Mercia Mudstone. Report C570, Construction Industry Research and Information Association (CIRIA), Westminster, London, UK.
  • Chen, Y. J., and F. H. Kulhawy. 1993. “Undrained Strength Interrelationships Among CIUC, UU, and UC Tests.” Journal of Geotechnical Engineering (American Society of Civil Engineers) 119 (11): 1732–1750. doi:10.1061/(ASCE)0733-9410(1993)119:11(1732).
  • Coyle, H. M., and L. C. Reese. 1966. “Load Transfer for Axially Loaded Piles in Clay.” Journal of the Soil Mechanics and Foundations Division (American Society of Civil Engineers) 92 (2): 1–26.
  • Crispin, J. J., C. P. Leahy, and G. Mylonakis. 2018. “Winkler Model for Axially-Loaded Piles in Inhomogeneous Soil.” Géotechnique Letters 8 (4): 290–297. doi:10.1680/jgele.18.00062.
  • Crispin J.J., Vardanega P.J. and Mylonakis G. 2019. Prediction of pile settlement using simplified models. In Proceedings of the XVII European Conference on Soil Mechanics and Geotechnical Engineering, Reykjavik, Iceland, September 1-6, 2019, Geotechnical Engineering, foundation of the future (Sigursteinsson, H., Erlingsson, S. and Bessason, B. eds.), paper 388, 8pp. Accessed August 27, 2021. https://www.issmge.org/uploads/publications/51/75/0388-ecsmge-2019_Crispin.pdf.
  • Davis, A. G., and R. J. Chandler. 1973. Further Work on the Engineering Properties of Keuper Marl. Report 47, Construction Industry Research and Information Association (CIRIA), Westminster, London, UK.
  • El-Marsafawi, H. G. 1994. “Dynamic Analysis of Single Piles and Pile Groups.” Ph.D. thesis., The University of Western Ontario, London, Ontario, Canada.
  • Fleming, W. G. K. 1992. “A new Method for Single Pile Settlement Prediction and Analysis.” Géotechnique 42 (3): 411–425. doi:10.1680/geot.1992.42.3.411.
  • Fleming, W. G. K., A. J. Weltman, M. F. Randolph, and W. K. Elson. 2009. Piling Engineering. 3rd ed. New York: Wiley.
  • Galbraith, A. P., E. R. Farrell, and J. J. Byrne. 2014. “Uncertainty in Pile Resistance from Static Load Tests Database.” Proceedings of the Institution of Civil Engineers - Geotechnical Engineering 167 (5): 431–446. doi:10.1680/geng.12.00132.
  • Gasparre, A., S. Nishimura, M. R. Coop, and R. J. Jardine. 2007a. “The Influence of Structure on the Behaviour of London Clay.” Géotechnique 57 (1): 19–31. doi:10.1680/geot.2007.57.1.19.
  • Gasparre, A., S. Nishimura, N. A. Minh, M. R. Coop, and R. J. Jardine. 2007b. “The Stiffness of Natural London Clay.” Géotechnique 57 (1): 33–47. doi:10.1680/geot.2007.57.1.33.
  • Guo, W. D. 2012. Theory and Practice of Pile Foundations. Boca Raton: CRC Press Taylor & Francis Group.
  • Hight, D. W., A. Gasparre, S. Nishimura, N. A. Minh, R. J. Jardine, and M. R. Coop. 2007. “Characteristics of the London Clay from the Terminal 5 Site at Heathrow Airport.” Géotechnique 57 (1): 3–18. doi:10.1680/geot.2007.57.1.3.
  • Jardine, R. J., F. C. Chow, R. Overy, and J. R. Standing. 2005. ICP Design Methods for Driven Piles in Sands and Clays. London: Thomas Telford Ltd.
  • Jardine, R. J., J. R. Standing, and F. C. Chow. 2006. “Some Observations of the Effects of Time on the Capacity of Piles Driven in Sand.” Géotechnique 56 (4): 227–244. doi:10.1680/geot.2006.56.4.227.
  • Kamal, R. H., M. R. Coop, R. J. Jardine, and A. Brosse. 2014. “The Post-Yield Behaviour of Four Eocene-to-Jurassic UK Stiff Clays.” Géotechnique 64 (8): 620–634. doi:10.1680/geot.13.P.043.
  • Kaynia, A. M. 1982. “Dynamic Stiffness and Seismic Response of Pile Groups.” Ph.D. thesis, Massachusetts Institute of Technology, Boston, MA, USA.
  • Kilborn, N. S., G. Treharne, and V. Zarifian. 1989. The Use of the Standard Penetration Test for the Design of Bored Piles in the Keuper Marl of Cardiff. In: Penetration Testing in the UK: Proceedings of the Geotechnology Conference Organized by the Institution of Civil Engineers and held in Birmingham on 6–8 July 1988. Thomas Telford, London, UK.
  • Kraft, L. M., R. P. Ray, and T. Kagawa. 1981. “Theoretical t-z Curves.” Journal of the Geotechnical Engineering Division (American Society of Civil Engineers) 107 (11): 1543–1561.
  • Kulhawy, F. H., and P. W. Mayne. 1990. Manual on Estimating Soil Properties for Foundation Design. EL-6800 Research Project 1493-6, Final Report, August 1990.
  • Lemnitzer, A., and C. Favaretti. 2013. Find a Pile.com. Accessed June 10, 2020, http://www.findapile.com/.
  • London District Surveyors Association (LDSA). 2017. Foundations no. 1: Guidance Notes for the Design of Straight Shafted Bored Piles in London Clay. London: London District Surveyor's Association Publications.
  • Mayne, P. W., M. R. Coop, S. Springman, A. An-Bin Huang, and J. Zornberg. 2009. Geomaterial Behavior and Testing. In: Proceedings of the 17th International Conference in Soil Mechanics & Geotechnical Engineering (ICSMGE), Alexandria, vol. 4, pp. 2777-2872. Accessed June 10, 2021, https://www.issmge.org/uploads/publications/1/21/STAL9781607500315-2777.pdf.
  • Meyerhof, G. G. 1976. “Bearing Capacity and Settlement of Pile Foundations (11th Terzaghi Lecture).” Journal of the Geotechnical Engineering Division (American Society of Civil Engineers) 102 (3): 195–228.
  • Mylonakis, G. 2001. “Winkler Modulus for Axially Loaded Piles.” Géotechnique 51 (5): 455–461. doi:10.1680/geot.2001.51.5.455.
  • Mylonakis, G., and G. Gazetas. 1998. “Settlement and Additional Internal Forces of Grouped Piles in Layered Soil.” Géotechnique 48 (1): 55–72. doi:10.1680/geot.1998.48.1.55.
  • Ong, Y. H., C. T. Toh, S. K. Chee, and H. Mohamad. 2021. “Bored Piles in Tropical Soils and Rocks: Shaft and Base Resistances, t–z and q–w Models.” Proceedings of the Institution of Civil Engineers – Geotechnical Engineering 174 (2): 193–224. doi:10.1680/jgeen.19.00106.
  • Ottaviani, M. 1975. “Three-dimensional Finite Element Analysis of Vertically Loaded Pile Groups.” Géotechnique 25 (2): 159–174. doi:10.1680/geot.1975.25.2.159.
  • Paikowsky, S. G., B. Brigisson, M. McVay, T. Nguyen, C. Kuo, G. Baecher, B. Ayyub, et al. 2004. Load and Resistance Factor Design (LRFD) for Deep Foundations. NCHRP Report 507, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, USA.
  • Patel, D. C. 1989. “A Case Study of the Shaft Friction of Bored Piles in London Clay in Terms of Total and Effective Stresses.” M.Sc. thesis, Imperial College London, UK.
  • Patel, D. C. 1992. “Interpretation of Results of Pile Tests in London Clay.” In Piling: European Practice and Worldwide Trends, 100–110. London: Thomas Telford.
  • Phoon, K.-K., and F. W. Kulhawy. 1999a. “Characterisation of Geotechnical Variability.” Canadian Geotechnical Journal 36 (4): 612–624. doi:10.1139/t99-038.
  • Phoon, K.-K., and F. W. Kulhawy. 1999b. “Evaluation of Geotechnical Property Variability.” Canadian Geotechnical Journal 36 (4): 625–639. doi:10.1139/t99-039.
  • Phoon, K.-K., and C. Tang. 2019a. “Effect of Extrapolation on Interpreted Capacity and Model Statistics of Steel H-Piles.” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 13 (4): 291–302. doi:10.1080/17499518.2019.1652920.
  • Phoon, K.-K., and C. Tang. 2019b. “Characterisation of Geotechnical Model Uncertainty.” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 13 (2): 101–130. doi:10.1080/17499518.2019.1585545.
  • Poulos, H. G. 1989. “Pile Behaviour – Theory and Application.” Géotechnique 39 (3): 365–415. doi:10.1680/geot.1989.39.3.365.
  • Poulos, H. G. 1999. “Common Procedures for Foundation Settlement Analysis – Are They Adequate?” Australian Geomechanics Journal 34 (1): 13–38.
  • Poulos, H. G. 2004. An Approach for Assessing Geotechnical Reduction Factors for Pile Design. In: Proceedings of the 9th Australia New Zealand Conference on Geomechanics Auckland, New Zealand, vol. 1, pp. 109–115. Accessed June 06, 2021. https://www.issmge.org/uploads/publications/89/103/9ANZ_009.pdf.
  • Poulos, H. G. 2017. Tall Building Foundation Design. Boca Raton: CRC Press.
  • Poulos, H. G., and E. H. Davis. 1980. Pile Foundation Analysis and Design. New York: Wiley.
  • Randolph, M. F. 2003. “Science and Empiricism in Pile Foundation Design.” Géotechnique 53 (10): 847–875. doi:10.1680/geot.2003.53.10.847.
  • Randolph, M. F., and C. P. Wroth. 1978. “Analysis of Deformation of Vertically Loaded Piles.” Journal of the Geotechnical Engineering Division (American Society of Civil Engineers) 104 (12): 1465–1488.
  • Salgado, R. 2008. The Engineering of Foundations. Boston: McGraw Hill.
  • Scott, R. F. 1981. Foundation Analysis. Englewood Cliffs: Prentice Hall.
  • Seed, H. B., and L. C. Reese. 1957. “The Action of Soft Clay Along Friction Piles.” Transactions of the American Society of Civil Engineers 122: 731–764.
  • Skempton, A. W. 1959. “Cast-in-situ Bored Piles in London Clay.” Géotechnique 9 (4): 153–173. doi:10.1680/geot.1959.9.4.153.
  • Stroud, M. A. 1974. The Standard Penetration Test in Insensitive Clays and Soft Rocks. In: Proceedings of the European symposium on penetration testing, vol. 2 (part 2), pp. 367-375. National Swedish Building Research, Stockholm, Sweden.
  • Tang, C., and K.-K. Phoon. 2021. Model Uncertainties in Foundation Design. Abingdon Oxford: CRC Press.
  • Tomlinson, M., and J. Woodward. 2015. Pile Design and Construction in Practice. 6th ed. Boca Raton: CRC Press Taylor & Francis Group.
  • Vardanega, P. J. 2015. “Sensitivity of Simplified Pile Settlement Calculations to Parameter Variation in Stiff Clay.” In Geotechnical Engineering for Infrastructure and Development. vol. 7, edited by M. G. Winter, D. M. Smith, P. J. L. Eldred, and D. G. Toll, 3777–3782. London: ICE Publishing.
  • Vardanega, P. J., and M. D. Bolton. 2011a. “Strength Mobilization in Clays and Silts.” Canadian Geotechnical Journal 48 (10): 1485–1503. and corrigendum, 49(5), 631, http://doi.org/10.1139/t2012-023.
  • Vardanega, P. J., and M. D. Bolton. 2011b. “Predicting Shear Strength Mobilisation of London Clay.” In Proceedings 15th European Conference on Soil Mechanics and Geotechnical Engineering: Geotechnics of Hard Soils – Weak Rocks. vol. 1, edited by A. Anagnostopoulos, M. Pachakis, and C. Tsatsanifos, 487–492. Amsterdam: IOS Press. http://doi.org/10.3233/978-1-60750-801-4-487.
  • Vardanega, P. J., J. J. Crispin, C. E. L. Gilder, E. Voyagaki, and K. Ntassiou. 2021a. “DINGO: A Pile Load Test Database.” In Piling: Proceedings of the Piling 2020 Conference, edited by K. G. Higgins, Y. Ainsworth, D. G. Toll, and A. S. Osman, 229–234. London: ICE Publishing.
  • Vardanega, P. J., J. J. Crispin, C. E. L. Gilder, E. Voyagaki, C. J. Shepheard, and E. A. Holcombe. 2018. “Geodatabases to Improve Geotechnical Design and Modelling.” ce/papers 2 (2-3): 401–406. doi:10.1002/cepa.704.
  • Vardanega, P. J., E. Kolody, S. H. Pennington, P. R. J. Morrison, and B. Simpson. 2012b. “Bored Pile Design in Stiff Clay I: Codes of Practice.” Proceedings of the Institution of Civil Engineers - Geotechnical Engineering 165 (4): 213–232. doi:10.1680/geng.11.00062.
  • Vardanega, P. J., E. Voyagaki, J. J. Crispin, C. E. L. Gilder, and K. Ntassiou. 2021b. The DINGO Database: Summary Report: April 2021, v1.1. Bristol: University of Bristol. https://doi.org/10.5523/bris.89r3npvewel2ea8ttb67ku4d.
  • Vardanega, P. J., M. G. Williamson, and M. D. Bolton. 2012a. “Bored Pile Design in Stiff Clay II: Mechanisms and Uncertainty.” Proceedings of the Institution of Civil Engineers - Geotechnical Engineering 165 (4): 233–246. and corrigendum, 166(5), 518. https://doi.org/10.1680/geng.2013.166.5.518.
  • Viggiani, C., A. Mandolini, and G. Russo. 2012. Piles and Pile Foundations. 1st Ed. London and New York: Spon Press, Taylor & Francis.
  • Voyagaki, E., J. Crispin, C. Gilder, P. Nowak, N. O'Riordan, D. Patel, and P. J. Vardanega. 2019. “Analytical Approaches to Predict Pile Settlement in London Clay.” In Sustainability Issues for the Deep Foundations. GeoMEast 2018. Sustainable Civil Infrastructures, edited by H. El-Naggar, K. Abdel-Rahman, B. Fellenius, and H. Shehata, 162–180. Cham: Springer. https://doi.org/10.1007/978-3-030-01902-0_14.
  • Whitaker, T., and R. W. Cooke. 1966. An Investigation of the Shaft and Base Resistance of Large Bored Piles in London Clay. In: Large Bored Piles: Proceedings of the Symposium by the Institution of Civil Engineers and the Reinforced Concrete Association; Institution of Civil Engineers, London, UK, pp. 7-49.
  • Yang, Z., R. Jardine, W. Guo, and F. Chow. 2015. “A New and Openly Accessible Database of Tests on Piles Driven in Sands.” Géotechnique Letters 5 (1): 12–20. doi:10.1680/geolett.14.00075.
  • Yang, Z., R. Jardine, W. Guo, and F. Chow. 2016. A Comprehensive Database of Tests on Axially Loaded Piles Driven in Sand. Amsterdam: Elsevier.
  • Zdravković, L., R. J. Jardine, D. M. G. Taborda, D. Abadias, H. J. Burd, B. W. Byrne, K. Gavin, et al. 2020a. “Ground Characterisation for PISA Pile Testing and Analysis.” Géotechnique 70 (11): 945–960. doi:10.1680/jgeot.18.pisa.001.
  • Zdravković, L., D. M. G. Taborda, D. M. Potts, D. Abadias, H. J. Burd, B. W. Byrne, K. Gavin, et al. 2020b. “Finite Element Modelling of Laterally Loaded Piles in a Stiff Glacial Clay Till at Cowden.” Géotechnique 70 (11): 999–1013. https://doi.org/10.1680/jgeot.18.pisa.005.