243
Views
0
CrossRef citations to date
0
Altmetric
Notes

Risk-informed adaptive sampling strategy for liquefaction severity mapping

& ORCID Icon
Pages 526-539 | Received 14 Feb 2023, Accepted 11 Jun 2023, Published online: 21 Jun 2023

References

  • Boulanger, R. W., and I. M. Idriss. 2014. CPT and SPT Based Liquefaction Triggering Procedures. Report No. UCD/CGM.-14, 1.
  • Boulanger, R. W., and I. M. Idriss. 2016. “CPT-Based Liquefaction Triggering Procedure.” Journal of Geotechnical and Geoenvironmental Engineering 142 (2): 04015065. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001388.
  • Brus, D. J., and G. B. Heuvelink. 2007. “Optimization of Sample Patterns for Universal Kriging of Environmental Variables.” Geoderma 138 (1–2): 86–95. https://doi.org/10.1016/j.geoderma.2006.10.016.
  • Cai, J. S., T. C. J. Yeh, E. Yan, R. X. Tang, J. C. Wen, and S. Y. Huang. 2018. “An Adaptive Sampling Approach to Reduce Uncertainty in Slope Stability Analysis.” Landslides 15 (6): 1193–1204. https://doi.org/10.1007/s10346-017-0936-2.
  • Candès, E. J., J. K. Romberg, and T. Tao. 2006. “Stable Signal Recovery from Incomplete and Inaccurate Measurements.” Communications on Pure and Applied Mathematics 59 (8): 1207–1223. https://doi.org/10.1002/cpa.20124.
  • Candès, E. J., and T. Tao. 2006. “Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies?.” IEEE Transactions on Information Theory 52 (12): 5406–5425. https://doi.org/10.1109/TIT.2006.885507.
  • CEN (European Committee for Standardization). 2007. Geotechnical Design – Part 2, Ground Investigation and Testing (Eurocode 7-2). Brussels: CEN.
  • Cox, L. A. 1999. “Adaptive Spatial Sampling of Contaminated Soil.” Risk Analysis 19 (6): 1059–1069. https://doi.org/10.1111/j.1539-6924.1999.tb01127.x.
  • Dietrich, C. R., and G. N. Newsam. 1993. “A Fast and Exact Method for Multidimensional Gaussian Stochastic Simulations.” Water Resources Research 29 (8): 2861–2869. https://doi.org/10.1029/93WR01070.
  • Donoho, D. L. 2006. “Compressed Sensing.” IEEE Transactions on Information Theory 52 (4): 1289–1306. https://doi.org/10.1109/TIT.2006.871582.
  • Franke, K. W., K. J. Ulmer, L. T. Ekstrom, and J. F. Meneses. 2016. “Clarifying the Differences between Traditional Liquefaction Hazard Maps and Probabilistic Liquefaction Reference Parameter Maps.” Soil Dynamics and Earthquake Engineering 90: 240–249. https://doi.org/10.1016/j.soildyn.2016.08.019.
  • Gelfand, A. E., S. E. Hills, A. Racine-Poon, and A. F. Smith. 1990. “Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling.” Journal of the American Statistical Association 85 (412): 972–985. https://doi.org/10.1080/01621459.1990.10474968.
  • Gong, W., Z. Luo, C. H. Juang, H. Huang, J. Zhang, and L. Wang. 2014. “Optimization of Site Exploration Program for Improved Prediction of Tunneling-Induced Ground Settlement in Clays.” Computers and Geotechnics 56: 69–79. https://doi.org/10.1016/j.compgeo.2013.10.008.
  • Guan, Z., and Y. Wang. 2020. “Statistical Charts for Determining Sample Size at Various Levels of Accuracy and Confidence in Geotechnical Site Investigation.” Géotechnique 70 (12): 1145–1159. https://doi.org/10.1680/jgeot.18.P.315.
  • Guan, Z., and Y. Wang. 2021. “Non-Parametric Construction of Site-Specific Non-Gaussian Multivariate Joint Probability Distribution from Sparse Measurements.” Structural Safety 91:102077. https://doi.org/10.1016/j.strusafe.2021.102077.
  • Guan, Z., and Y. Wang. 2022a. “CPT-Based Probabilistic Liquefaction Assessment Considering Soil Spatial Variability, Interpolation Uncertainty and Model Uncertainty.” Computers and Geotechnics 141:104504. https://doi.org/10.1016/j.compgeo.2021.104504.
  • Guan, Z., and Y. Wang. 2022b. “Quantifying Reliability of Liquefaction Severity Map Developed from Sparse Cone Penetration Tests.” Canadian Geotechnical Journal 60 (5): 623–641. https://doi.org/10.1139/cgj-2022-0356.
  • Guan, Z., Y. Wang, Z. Cao, and Y. Hong. 2020. “Smart Sampling Strategy for Investigating Spatial Distribution of Subsurface Shallow Gas Pressure in Hangzhou Bay Area of China.” Engineering Geology 274:105711. https://doi.org/10.1016/j.enggeo.2020.105711.
  • Guan, Z., Y. Wang, and A. W. Stuedlein. 2022a. “Efficient Three-Dimensional Soil Liquefaction Potential and Reconsolidation Settlement Assessment from Limited CPTs Considering Spatial Variability.” Soil Dynamics and Earthquake Engineering 163:107518. https://doi.org/10.1016/j.soildyn.2022.107518.
  • Guan, Z., Y. Wang, and T. Zhao. 2022b. “Adaptive Sampling Strategy for Characterizing Spatial Distribution of Soil Liquefaction Potential Using Cone Penetration Test.” Journal of Rock Mechanics and Geotechnical Engineering 14 (4): 1221–1231. https://doi.org/10.1016/j.jrmge.2022.01.011.
  • Holzer, T. L., M. J. Bennett, T. E. Noce, A. C. Padovani, I. I. I. Tinsley, and J. C. 2006. “Liquefaction Hazard Mapping with LPI in the Greater Oakland, California, Area.” Earthquake Spectra 22 (3): 693–708. https://doi.org/10.1193/1.2218591.
  • Huang, Y., and M. Yu. 2013. “Review of Soil Liquefaction Characteristics During Major Earthquakes of the Twenty-First Century.” Natural Hazards 65: 2375–2384. https://doi.org/10.1007/s11069-012-0433-9.
  • Iwasaki, T., F. Tatsuoka, K. Tokida, and S. Yasuda. 1978. “A Practical Method for Assessing Soil Liquefaction Potential Based on Case Studies at Various Sites in Japan.” In Proceedings of the 2nd International Conference on Microzonation. Washington, DC: National Science Foundation.
  • Ji, S., Y. Xue, and L. Carin. 2008. “Bayesian Compressive Sensing.” IEEE Transactions on Signal Processing 56 (6): 2346–2356. https://doi.org/10.1109/TSP.2007.914345
  • Juang, C. H., M. Shen, C. Wang, and Q. Chen. 2018. “Random Field-Based Regional Liquefaction Hazard Mapping – Data Inference and Model Verification Using a Synthetic Digital Soil Field.” Bulletin of Engineering Geology and the Environment 77 (3): 1273–1286. https://doi.org/10.1007/s10064-017-1071-y.
  • Lee, D. H., C. S. Ku, and H. Yuan. 2004. “A Study of the Liquefaction Risk Potential at Yuanlin, Taiwan.” Engineering Geology 71 (1-2): 97–117. https://doi.org/10.1016/S0013-7952(03)00128-5.
  • Lo, M. K., and Y. F. Leung. 2018. “Reliability Assessment of Slopes Considering Sampling Influence and Spatial Variability by Sobol’ Sensitivity Index.” Journal of Geotechnical and Geoenvironmental Engineering 144 (4): 04018010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001852.
  • Lyu, B., Y. Hu, and Y. Wang. 2023. “Data-Driven Development of Three-Dimensional Subsurface Models from Sparse Measurements Using Bayesian Compressive Sampling: A Benchmarking Study.” ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 9 (2). https://doi.org/10.1061/AJRUA6.RUENG-935.
  • Marchant, B. P., and R. M. Lark. 2006. “Adaptive Sampling and Reconnaissance Surveys for Geostatistical Mapping of the Soil.” European Journal of Soil Science 57 (6): 831–845. https://doi.org/10.1111/j.1365-2389.2005.00774.x.
  • Maurer, B. W., R. A. Green, M. Cubrinovski, and B. A. Bradley. 2014. “Evaluation of the Liquefaction Potential Index for Assessing Liquefaction Hazard in Christchurch, New Zealand.” Journal of Geotechnical and Geoenvironmental Engineering 140 (7): 04014032. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001117.
  • Olson, S. M., S. F. Obermeier, and T. D. Stark. 2001. “Interpretation of Penetration Resistance for Back-Analysis at Sites of Previous Liquefaction.” Seismological Research Letters 72 (1): 46–59. https://doi.org/10.1785/gssrl.72.1.46.
  • Papathanassiou, G. 2008. “LPI-Based Approach for Calibrating the Severity of Liquefaction-Induced Failures and for Assessing the Probability of Liquefaction Surface Evidence.” Engineering Geology 96 (1-2): 94–104. https://doi.org/10.1016/j.enggeo.2007.10.005.
  • Phoon, K. K., and F. H. Kulhawy. 1999. “Characterization of Geotechnical Variability.” Canadian Geotechnical Journal 36 (4): 612–624. https://doi.org/10.1139/t99-038.
  • Pinheiro, M., X. Emery, A. M. A. Rocha, T. Miranda, and L. Lamas. 2017. “Boreholes Plans Optimization Methodology Combining Geostatistical Simulation and Simulated Annealing.” Tunnelling and Underground Space Technology 70: 65–75. https://doi.org/10.1016/j.tust.2017.07.003.
  • Seed, H. B., and I. M. Idriss. 1971. “Simplified Procedure for Evaluating Soil Liquefaction Potential.” Journal of the Soil Mechanics and Foundations Division 97 (9): 1249–1273. https://doi.org/10.1061/JSFEAQ.0001662.
  • Shi, C., and Y. Wang. 2021. “Smart Determination of Borehole Number and Locations for Stability Analysis of Multi-Layered Slopes Using Multiple Point Statistics and Information Entropy.” Canadian Geotechnical Journal 58 (11): 1669–1689. https://doi.org/10.1139/cgj-2020-0327.
  • Sonmez, H. 2003. “Modification of the Liquefaction Potential Index and Liquefaction Susceptibility Mapping for a Liquefaction-Prone Area (Inegol,Turkey).” Environmental Geology 44: 862–871. https://doi.org/10.1007/s00254-003-0831-0.
  • Toprak, S., and T. L. Holzer. 2003. “Liquefaction Potential Index: Field Assessment.” Journal of Geotechnical and Geoenvironmental Engineering 129 (4): 315–322. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(315).
  • Upadhyaya, S., R. A. Green, B. W. Maurer, A. Rodriguez-Marek, and S. van Ballegooy. 2022. “Limitations of Surface Liquefaction Manifestation Severity Index Models Used in Conjunction with Simplified Stress-Based Triggering Models.” Journal of Geotechnical and Geoenvironmental Engineering 148 (3): 04021194. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002725.
  • Van Groenigen, J. W., W. Siderius, and A. Stein. 1999. “Constrained Optimisation of Soil Sampling for Minimisation of the Kriging Variance.” Geoderma 87 (3-4): 239–259. https://doi.org/10.1016/S0016-7061(98)00056-1.
  • Vanmarcke, E. H. 2010. Random Fields: Analysis and Synthesis. London.: World Scientific.
  • Wang, C., Q. Chen, M. Shen, and C. H. Juang. 2017. “On the Spatial Variability of CPT-Based Geotechnical Parameters for Regional Liquefaction Evaluation.” Soil Dynamics and Earthquake Engineering 95: 153–166. https://doi.org/10.1016/j.soildyn.2017.02.001.
  • Wang, Y., and P. Li. 2021. “Data-Driven Determination of Sample Number and Efficient Sampling Locations for Geotechnical Site Investigation of a Cross-Section Using Voronoi Diagram and Bayesian Compressive Sampling.” Computers and Geotechnics 130: 103898. https://doi.org/10.1016/j.compgeo.2020.103898.
  • Wang, Y., and T. Zhao. 2017. “Statistical Interpretation of Soil Property Profiles from Sparse Data Using Bayesian Compressive Sampling.” Géotechnique 67 (6): 523–536. https://doi.org/10.1680/jgeot.16.P.143.
  • Youd, T. L., I. M. Idriss, R. D. Andrus, I. Arango, G. Castro, J. T. Christian, R. Dobry, et al. 2001. “Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils.” Journal of Geotechnical and Geoenvironmental Engineering 127 (10): 817–833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817).
  • Youd, T. L., and D. M. Perkins. 1978. “Mapping Liquefaction-Induced Ground Failure Potential.” Journal of the Geotechnical Engineering Division 104 (4): 433–446. https://doi.org/10.1061/AJGEB6.0000612.
  • Zhao, T., and Y. Wang. 2019. “Determination of Efficient Sampling Locations in Geotechnical Site Characterization Using Information Entropy and Bayesian Compressive Sampling.” Canadian Geotechnical Journal 56 (11): 1622–1637. https://doi.org/10.1139/cgj-2018-0286.
  • Zhao, T., L. Xu, and Y. Wang. 2020. “Fast Non-Parametric Simulation of 2D Multi-Layer Cone Penetration Test (CPT) Data without Pre-Stratification Using Markov Chain Monte Carlo Simulation.” Engineering Geology 273: 105670. https://doi.org/10.1016/j.enggeo.2020.105670.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.