256
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Immunomethylomic profiles of long-term head and neck squamous cell carcinoma survivors on immune checkpoint inhibitors

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 14 Jan 2024, Accepted 11 Apr 2024, Published online: 21 May 2024

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. Ca Cancer J Clin. 2022;72:7–33. doi:10.3322/caac.21708
  • Howlander N, Noone A, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2018 [Internet]. National Cancer Institute. 2021 [ cited 2023 Feb 11]. Available from: https://seer.cancer.gov/csr/1975_2018/
  • Rettig EM, D'Souza G. Epidemiology of head and neck cancer. Surg Oncol Clin N Am. 2015;24:379–396. doi:10.1016/j.soc.2015.03.001
  • Nissi L, Suilamo S, Kytö E, et al. Recurrence of head and neck squamous cell carcinoma in relation to high-risk treatment volume. Clin Transl Radiat Oncol. 2021;27:139–146. doi:10.1016/j.ctro.2021.01.013
  • Cohen EEW, Soulières D, Tourneau CL, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, Phase III study. Lancet. 2019;393:156–167. doi:10.1016/S0140-6736(18)31999-8
  • Ferris RL, Jr GB, Jerome F, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. New Engl J Med. 2016;375:1856–1867. doi:10.1056/NEJMoa1602252
  • Shibata H, Saito S, Uppaluri R. Immunotherapy for head and neck cancer: a paradigm shift from induction chemotherapy to neoadjuvant immunotherapy. Frontiers Oncol. 2021;11:727433. doi:10.3389/fonc.2021.727433
  • Li H, van der Merwe PA, Sivakumar S. Biomarkers of response to PD-1 pathway blockade. Brit J Cancer. 2022;126:1663–1675. doi:10.1038/s41416-022-01743-4
  • Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012;13:86. doi:10.1186/1471-2105-13-86
  • Salas LA, Koestler DC, Butler RA, et al. An optimized library for reference-based deconvolution of whole-blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray. Genome Biol. 2018;19:64. doi:10.1186/s13059-018-1448-7
  • Salas LA, Zhang Z, Koestler DC, et al. Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling. Nat Commun. 2022;13:761. doi:10.1038/s41467-021-27864-7
  • Chen J-Q, Salas LA, Wiencke JK, et al. Immune profiles and DNA methylation alterations related with nonmuscle-invasive bladder cancer outcomes. Clin Epigenetics. 2022;14:14. doi:10.1186/s13148-022-01234-6
  • Titus AJ, Gallimore RM, Salas LA, et al. Cell-type deconvolution from DNA methylation: a review of recent applications. Hum Mol Genet. 2017;26:R216–R224. doi:10.1093/hmg/ddx275
  • Wiencke JK, Koestler DC, Salas LA, et al. Immunomethylomic approach to explore the blood neutrophil lymphocyte ratio (NLR) in glioma survival. Clin Epigenetics. 2017;9:10. doi:10.1186/s13148-017-0316-8
  • Zhang Z, Stolrow HG, Christensen BC, et al. Down syndrome altered cell composition in blood, brain, and buccal swab samples profiled by DNA-methylation-based cell-type deconvolution. Cells. 2023;12:1168. doi:10.3390/cells12081168
  • Koestler DC, Usset J, Christensen BC, et al. DNA methylation-derived neutrophil-to-lymphocyte ratio: an epigenetic tool to explore cancer inflammation and outcomes. Cancer Epidemiology Prev Biomarkers. 2017;26:328–338. doi:10.1158/1055-9965.EPI-16-0461
  • Perisanidis C, Kornek G, Pöschl PW, et al. High neutrophil-to-lymphocyte ratio is an independent marker of poor disease-specific survival in patients with oral cancer. Med Oncol. 2013;30:334. doi:10.1007/s12032-012-0334-5
  • Templeton AJ, McNamara MG, Šeruga B, et al. Jnci J National Cancer Inst. 2014;106(6):106:dju124. doi:10.1093/jnci/dju124
  • Backteman K, Ernerudh J. Biological and methodological variation of lymphocyte subsets in blood of human adults. J Immunol Methods. 2007;322:20–27. doi:10.1016/j.jim.2007.01.021
  • Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–1369. doi:10.1093/bioinformatics/btu049
  • Zhang Z, Reynolds SR, Stolrow HG, et al. Deciphering the role of immune cell composition in epigenetic age acceleration: Insights from cell-type deconvolution applied to human blood epigenetic clocks. Aging Cell. 2024;23:e14071. doi:10.1111/acel.14071
  • Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:3156. doi:10.1186/gb-2013-14-10-r115
  • Smithson M, Verkuilen J. A better lemon squeezer? maximum-likelihood regression with beta-distributed dependent variables. Psychol Methods. 2006;11:54–71. doi:10.1037/1082-989X.11.1.54
  • Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–930. doi:10.1111/j.1654-1103.2003.tb02228.x
  • Aitchison J, Greenacre M. Biplots of compositional data. J R Stat Soc: Ser C (Appl Stat). 2002;51:375–392. doi:10.1111/1467-9876.00275
  • Kitchens LJ. BSDA: Basic Statistics and Data Analysis [Internet]. 2023. Available from: https://github.com/alanarnholt/BSDA
  • Fernández-Martínez M, Vicca S, Janssens IA, et al. The consecutive disparity index, D: a measure of temporal variability in ecological studies. Ecosphere. 2018;9(12):9. doi:10.1002/ecs2.2527
  • Zhou L, Zeng Z, Egloff AM, et al. Checkpoint blockade-induced CD8+ T cell differentiation in head and neck cancer responders. J Immunother Cancer. 2022;10:e004034. doi:10.1136/jitc-2021-004034
  • Kurtulus S, Madi A, Escobar G, et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1-CD8+ tumor-infiltrating T cells. Immunity. 2019;50:181–194.e6. doi:10.1016/j.immuni.2018.11.014
  • Tietze JK, Angelova D, Heppt MV, et al. The proportion of circulating CD45RO+CD8+ memory T cells is correlated with clinical response in melanoma patients treated with ipilimumab. Eur J Cancer. 2017;75:268–279. doi:10.1016/j.ejca.2016.12.031
  • de Coaña YP, Wolodarski M, Poschke I, et al. Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget. 2017;8:21539–21553. doi:10.18632/oncotarget.15368
  • Jin Y, Tan A, Feng J, et al. Prognostic impact of memory CD8(+) T cells on immunotherapy in human cancers: a systematic review and meta-analysis. Front Oncol. 2021;11:698076. doi:10.3389/fonc.2021.698076
  • Komlós G, Csurgay K, Horváth F, et al. Periodontitis as a risk for oral cancer: a case–control study. BMC Oral Heal. 2021;21:640. doi:10.1186/s12903-021-01998-y
  • Tsushima F, Sakurai J, Uesugi A, et al. Malignant transformation of oral lichen planus: a retrospective study of 565 Japanese patients. BMC Oral Heal. 2021;21:298. doi:10.1186/s12903-021-01652-7
  • Arduino PG, Magliano A, Gambino A, et al. Risk of malignant transformation in 3173 subjects with histopathologically confirmed oral lichen planus: a 33-year cohort study in Northern Italy. Cancers. 2021;13:5740. doi:10.3390/cancers13225740
  • Polizzi A, Santonocito S, Distefano A, et al. Analysis of oral lichen planus severity on micro-RNA linked with malignant transformation risks. Oral Dis. 2023. doi:10.1111/odi.14758
  • Polizzi A, Santonocito S, Giudice AL, et al. Analysis of the response to two pharmacological protocols in patients with oral lichen planus: a randomized clinical trial. Oral Dis. 2023;29:755–763. doi:10.1111/odi.13960