153
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Epigenome-850K-wide profiling reveals peripheral blood differential methylation in term low birth weight

ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Received 11 Mar 2024, Accepted 20 May 2024, Published online: 03 Jul 2024

References

  • UNICEF-WHO low birthweight database. July 2023. https://www.who.int/teams/nutrition-and-food-safety/monitoring-nutritional-status-and-food-safety-and-events/joint-low-birthweight-estimates.
  • Estimates of burden and consequences of infants born small for gestational age in low and middle income countries with INTERGROWTH-21st standard: analysis of CHERG datasets. BMJ. 2017;358:j4229. doi:10.1136/bmj.j4229
  • Coats LE, Davis GK, Newsome AD, et al. Low birth weight, blood pressure and renal susceptibility. Curr Hypertens Rep. 2019;21(8):62. doi:10.1007/s11906-019-0969-0
  • Hovi P, Vohr B, Ment LR, et al. Blood pressure in young adults born at very low birth weight: Adults Born Preterm International Collaboration. Hypertension. 2016;68(4):880–887. doi:10.1161/HYPERTENSIONAHA.116.08167
  • Luyckx VA, Bertram JF, Brenner BM, et al. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet. 2013;382(9888):273–283. doi:10.1016/S0140-6736(13)60311-6
  • Valero De Bernabe J, Soriano T, Albaladejo R, et al. Risk factors for low birth weight: a review. Eur J Obstet Gynecol Reprod Biol. 2004;116(1):3–15. doi:10.1016/j.ejogrb.2004.03.007
  • Juliusdottir T, Steinthorsdottir V, Stefansdottir L, et al. Distinction between the effects of parental and fetal genomes on fetal growth. Nat Genet. 2021;53(8):1135–1142. doi:10.1038/s41588-021-00896-x
  • Beaumont RN, Warrington NM, Cavadino A, et al. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum Mol Genet. 2018;27(4):742–756. doi:10.1093/hmg/ddx429
  • Freathy RM, Weedon MN, Bennett A, et al. Type 2 diabetes TCF7L2 risk genotypes alter birth weight: a study of 24,053 individuals. Am J Hum Genet. 2007;80(6):1150–1161. doi:10.1086/518517
  • Apostolidou S, Abu-Amero S, O'Donoghue K, et al. Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight. J Mol Med (Berl). 2007;85(4):379–387. doi:10.1007/s00109-006-0131-8
  • Wu H, Zhu P, Geng X, et al. Genetic polymorphism of MTHFR C677T with preterm birth and low birth weight susceptibility: a meta-analysis. Arch Gynecol Obstet. 2017;295(5):1105–1118. doi:10.1007/s00404-017-4322-z
  • Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571(7766):489–499. doi:10.1038/s41586-019-1411-0
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl.):245–254. doi:10.1038/ng1089
  • Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol. 2007;23(3):297–307. doi:10.1016/j.reprotox.2006.08.012
  • Law PP, Holland ML. DNA methylation at the crossroads of gene and environment interactions. Essays Biochem. 2019;63(6):717–726. doi:10.1042/EBC20190031
  • Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447(7143):425–432. doi:10.1038/nature05918
  • Hayashi I, Yamaguchi K, Sumitomo M, et al. Full-term low birth weight infants have differentially hypermethylated DNA related to immune system and organ growth: a comparison with full-term normal birth weight infants. BMC Res Notes. 2020;13(1):199. doi:10.1186/s13104-020-04961-2
  • Mao LL, Xiao XH, Zhang Q, et al. DNA methylation and birth weight: a genome-wide analysis. Biomed Environ Sci. 2017;30(9):667–670. doi:10.3967/bes2017.088
  • Tekola-Ayele F, Zeng X, Ouidir M, et al. DNA methylation loci in placenta associated with birthweight and expression of genes relevant for early development and adult diseases. Clin Epigenetics. 2020;12(1):78. doi:10.1186/s13148-020-00873-x
  • Tian FY, Wang XM, Xie C, et al. Placental surface area mediates the association between FGFR2 methylation in placenta and full-term low birth weight in girls. Clin Epigenetics. 2018;10:39. doi:10.1186/s13148-018-0472-5
  • Tian FY, Hivert MF, Wen X, et al. Tissue differences in DNA methylation changes at AHRR in full term low birth weight in maternal blood, placenta and cord blood in Chinese. Placenta. 2017;52:49–57. doi:10.1016/j.placenta.2017.02.017
  • Ju C, Fiori LM, Belzeaux R, et al. Integrated genome-wide methylation and expression analyses reveal functional predictors of response to antidepressants. Transl Psychiatry. 2019;9(1):254. doi:10.1038/s41398-019-0589-0
  • Wang T, Li P, Qi Q, et al. A multiplex blood-based assay targeting DNA methylation in PBMCs enables early detection of breast cancer. Nat Commun. 2023;14(1):4724. doi:10.1038/s41467-023-40389-5
  • Zhu H, Wu LF, Mo XB, et al. Rheumatoid arthritis-associated DNA methylation sites in peripheral blood mononuclear cells. Ann Rheum Dis. 2019;78(1):36–42. doi:10.1136/annrheumdis-2018-213970
  • Bagot RC, Meaney MJ. Epigenetics and the biological basis of gene x environment interactions. J Am Acad Child Adolesc Psych. 2010;49(8):752–771. doi:10.1016/j.jaac.2010.06.001
  • Zuo Z, Roy B, Chang YK, et al. Measuring quantitative effects of methylation on transcription factor-DNA binding affinity. Sci Adv. 2017;3(11):eaao1799. doi:10.1126/sciadv.aao1799
  • Banerjee S, Wei X, Xie H. Recursive motif analyses identify brain epigenetic transcription regulatory modules. Comput Struct Biotechnol J. 2019;17:507–515. doi:10.1016/j.csbj.2019.04.003
  • Collier JJ, Suomi F, Olahova M, et al. Emerging roles of ATG7 in human health and disease. EMBO Mol Med. 2021;13(12):e14824. doi:10.15252/emmm.202114824
  • Zhou H, Qian X, Xu N, et al. Disruption of Atg7-dependent autophagy causes electromotility disturbances, outer hair cell loss, and deafness in mice. Cell Death Dis. 2020;11(10):913. doi:10.1038/s41419-020-03110-8
  • Sivasubramaniam S, Sun X, Pan YR, et al. Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA, and CHK1. Genes Dev. 2008;22(5):587–600. doi:10.1101/gad.1627708
  • Tian J, Ling L, Shboul M, et al. Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am J Hum Genet. 2010;87(6):768–778. doi:10.1016/j.ajhg.2010.11.005
  • Li F, Wang M, Li X, et al. Inflammatory-miR-301a circuitry drives mTOR and Stat3-dependent PSC activation in chronic pancreatitis and PanIN. Mol Ther Nucleic Acids. 2022;27:970–982. doi:10.1016/j.omtn.2022.01.011
  • Ju S, Zhu Y, Liu L, et al. Gadd45b and Gadd45g are important for anti-tumor immune responses. Eur J Immunol. 2009;39(11):3010–3018. doi:10.1002/eji.200839154
  • Bloyd M, Settas N, Faucz FR, et al. The PRKAR1B p.R115K variant is associated with lipoprotein profile in African American youth with metabolic challenges. J Endocr Soc. 2021;5(8):bvab071. doi:10.1210/jendso/bvab071
  • Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–1022. doi:10.1101/gad.2037511
  • Jia Y, Li P, Fang L, et al. Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer. Cell Discov. 2016;2:16007. doi:10.1038/celldisc.2016.7
  • Kingdom JC, Audette MC, Hobson SR, et al. A placenta clinic approach to the diagnosis and management of fetal growth restriction. Am J Obstet Gynecol. 2018;218(2S):S803–S817. doi:10.1016/j.ajog.2017.11.575
  • Fowden AL, Ward JW, Wooding FP, et al. Programming placental nutrient transport capacity. J Physiol. 2006;572(Pt 1):5–15. doi:10.1113/jphysiol.2005.104141
  • Deigner HP GE, Claus RA. Sphingolipid metabolism in systemic inflammation. Intensive Care Med. 2007;2007:249–266. doi:10.1007/978-0-387-49518-7_23
  • Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2018;19(3):175–191. doi:10.1038/nrm.2017.107
  • Kalinichenko LS, Gulbins E, Kornhuber J, et al. Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res. 2022;86:101162. doi:10.1016/j.plipres.2022.101162
  • Henriquez-Henriquez M, Acosta MT, Martinez AF, et al. Mutations in sphingolipid metabolism genes are associated with ADHD. Transl Psychiatry. 2020;10(1):231. doi:10.1038/s41398-020-00881-8
  • Kowal K, Zebrowska E, Chabowski A. Altered sphingolipid metabolism is associated with asthma phenotype in house dust mite-allergic patients. Allergy Asthma Immunol Res. 2019;11(3):330–342. doi:10.4168/aair.2019.11.3.330